
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2650404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pHâ€Dependence of the Hydration of 5â€Formylcytosine: an Experimental and Theoretical Study. ChemBioChem, 2022, , .	2.6	5
2	Combined in Silico and in Vitro Approaches To Uncover the Oxidation and Schiff Base Reaction of Baicalein as an Inhibitor of Amyloid Protein Aggregation. Chemistry - A European Journal, 2022, 28, .	3.3	3
3	Reactivities of allenic and olefinic Michael acceptors towards phosphines. Chemical Communications, 2022, 58, 3358-3361.	4.1	10
4	Epigenetic Anti ancer Treatment With a Stabilized Carbocyclic Decitabine Analogue. Chemistry - A European Journal, 2022, 28, .	3.3	3
5	Annelated Pyridine Bases for the Selective Acylation of 1,2â€Diols. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
6	Reliable Functionalization of 5,6â€Fused Bicyclic Nâ€Heterocycles Pyrazolopyrimidines and Imidazopyridazines via Zinc and Magnesium Organometallics. Chemistry - A European Journal, 2022, 28, .	3.3	7
7	The Sizeâ€Accelerated Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 774-778.	13.8	17
8	Cycloaddition of CO ₂ to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Organic Chemistry Frontiers, 2021, 8, 613-627.	4.5	50
9	Role of substituents in the Hofmann–Löffler–Freytag reaction. A quantum-chemical case study on nicotine synthesis. Organic and Biomolecular Chemistry, 2021, 19, 854-865.	2.8	4
10	Size-Driven Inversion of Selectivity in Esterification Reactions: Secondary Beat Primary Alcohols. Journal of Organic Chemistry, 2021, 86, 3456-3489.	3.2	4
11	Stereoselective and Stereospecific Triflateâ€Mediated Intramolecular Schmidt Reaction: Ready Access to Alkaloid Skeletons**. Angewandte Chemie, 2021, 133, 10267-10273.	2.0	2
12	Stereoselective and Stereospecific Triflateâ€Mediated Intramolecular Schmidt Reaction: Ready Access to Alkaloid Skeletons**. Angewandte Chemie - International Edition, 2021, 60, 10179-10185.	13.8	9
13	TETâ€Like Oxidation in 5â€Methylcytosine and Derivatives: A Computational and Experimental Study. ChemBioChem, 2021, 22, 3333-3340.	2.6	6
14	Sizeâ€Induced Inversion of Selectivity in the Acylation of 1,2â€Diols. Chemistry - A European Journal, 2021, 27, 18084-18092.	3.3	3
15	Radical chain monoalkylation of pyridines. Chemical Science, 2021, 12, 15362-15373.	7.4	7
16	Die größenbeschleunigte kinetische Racematspaltung sekundäer Alkohole. Angewandte Chemie, 2021, 133, 786-791.	2.0	4
17	Conformation-Dependent Antioxidant Properties of \hat{I}^2 -Carotene. Organic and Biomolecular Chemistry, 2021, , .	2.8	7
18	Development of a Modular Online Video Library for the Introductory Organic Chemistry Laboratory. Journal of Chemical Education, 2020, 97, 338-343.	2.3	17

#	Article	IF	CITATIONS
19	Student Individuality Impacts Use and Benefits of an Online Video Library for the Organic Chemistry Laboratory. Journal of Chemical Education, 2020, 97, 328-337.	2.3	20
20	Molekülâ€induzierte Radikalbildung – eine Neubewertung. Angewandte Chemie, 2020, 132, 6378-6389.	2.0	0
21	Moleculeâ€Induced Radical Formation (MIRF) Reactions—A Reappraisal. Angewandte Chemie - International Edition, 2020, 59, 6318-6329.	13.8	8
22	Highly Regioselective Addition of Allylic Zinc Halides and Various Zinc Enolates to [1.1.1]Propellane. Angewandte Chemie - International Edition, 2020, 59, 20235-20241.	13.8	40
23	Hoch regioselektive Addition von allylischen Zinkhalogeniden und verschiedenen Zinkenolaten an [1.1.1]Propellan. Angewandte Chemie, 2020, 132, 20412-20418.	2.0	8
24	Azo-dimethylaminopyridine-functionalized Ni(II)-porphyrin as a photoswitchable nucleophilic catalyst. Beilstein Journal of Organic Chemistry, 2020, 16, 2119-2126.	2.2	10
25	A Predictive Model Towards Site‣elective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnClâ‹LiCl. Angewandte Chemie - International Edition, 2020, 59, 14992-14999.	13.8	20
26	Phosphine-catalyzed [3 + 2] annulation of 2-aminoacrylates with allenoates and mechanistic studies. Catalysis Science and Technology, 2020, 10, 3959-3964.	4.1	6
27	Pyridinyl Amide Ion Pairs as Lewis Base Organocatalysts. Journal of Organic Chemistry, 2020, 85, 5390-5402.	3.2	15
28	Duality of Reactivity of a Biradicaloid Compound with an <i>o</i> -Quinodimethane Scaffold. Journal of the American Chemical Society, 2020, 142, 5408-5418.	13.7	25
29	Construction of α,αâ€disubstituted αâ€Amino Acid Derivatives via azaâ€Moritaâ€Baylisâ€Hillman Reactions of 2â€Aminoacrylates with Activated Olefins. ChemCatChem, 2020, 12, 1143-1147.	3.7	2
30	Fast Microsecond Dynamics of the Protein–Water Network in the Active Site of Human Carbonic Anhydrase II Studied by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2019, 141, 19276-19288.	13.7	46
31	Radicalâ€Pair Formation in Hydrocarbon (Aut)Oxidation. Chemistry - A European Journal, 2019, 25, 8604-8611.	3.3	7
32	Efficient Syntheses of New Super Lewis Basic Tris(dialkylamino)â€Substituted Terpyridines and Comparison of Their Methyl Cation Affinities. Chemistry - A European Journal, 2019, 25, 7526-7533.	3.3	13
33	Kinetics and Mechanism of Oxirane Formation by Darzens Condensation of Ketones: Quantification of the Electrophilicities of Ketones. Journal of the American Chemical Society, 2018, 140, 5500-5515.	13.7	34
34	Nucleophilicity and Electrophilicity Parameters for Predicting Absolute Rate Constants of Highly Asynchronous 1,3-Dipolar Cycloadditions of Aryldiazomethanes. Journal of the American Chemical Society, 2018, 140, 16758-16772.	13.7	52
35	A third generation of radical fluorinating agents based on N-fluoro-N-arylsulfonamides. Nature Communications, 2018, 9, 4888.	12.8	58
36	Electrostatic Effects on the Stability of Peptide Radicals. Journal of Physical Chemistry B, 2018, 122, 8880-8890.	2.6	5

#	Article	IF	CITATIONS
37	Size-dependent rate acceleration in the silylation of secondary alcohols: the bigger the faster. Chemical Science, 2018, 9, 6509-6515.	7.4	24
38	Mechanistic Analysis and Characterization of Intermediates in the Phosphane atalyzed Oligomerization of Isocyanates. Chemistry - A European Journal, 2018, 24, 14387-14391.	3.3	10
39	Unique Stereoselective Homolytic Câ^'O Bond Activation in Diketopiperazineâ€Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry - A European Journal, 2018, 24, 15336-15345.	3.3	7
40	Substituent Effects in the Silylation of Secondary Alcohols: A Mechanistic Study. Chemistry - A European Journal, 2018, 24, 15052-15058.	3.3	21
41	Chemoselectivity in Esterification Reactions – Size Matters after All. Synthesis, 2017, 49, 3460-3470.	2.3	11
42	Nucleophilicities and Lewis Basicities of Sterically Hindered Pyridines. Synthesis, 2017, 49, 3495-3504.	2.3	15
43	Quantification and Theoretical Analysis of the Electrophilicities of Michael Acceptors. Journal of the American Chemical Society, 2017, 139, 13318-13329.	13.7	168
44	Aminopyridineâ€Borane Complexes as Hydrogen Atom Donor Reagents: Reaction Mechanism and Substrate Selectivity. Chemistry - A European Journal, 2017, 23, 13455-13464.	3.3	12
45	OO bond homolysis in hydrogen peroxide. Journal of Computational Chemistry, 2017, 38, 2186-2192.	3.3	9
46	A first-principles investigation of histidine and its ionic counterparts. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	7
47	An Unusual Grob–type C–C/Câ€O Bond Cleavage of 5â€Acylâ€2,3â€dihydroâ€4 <i>H</i> â€pyranâ€4â€one D ChemistrySelect, 2016, 1, 1109-1116.	erivatives. 1.5	4
48	Conformational Preferences in Small Peptide Models: The Relevance of <i>cis</i> / <i>trans</i> onformations. Chemistry - A European Journal, 2016, 22, 13328-13335.	3.3	4
49	Radical Stability as a Guideline in C–H Amination Reactions. Advanced Synthesis and Catalysis, 2016, 358, 3983-3991.	4.3	65
50	Regioselective Transitionâ€Metalâ€Free Allyl–Allyl Crossâ€Couplings. Angewandte Chemie - International Edition, 2016, 55, 10502-10506.	13.8	19
51	Front Cover Picture: Radical Stability as a Guideline in C–H Amination Reactions (Adv. Synth. Catal.) Tj ETQq1 1	0,784314 4.3	rgBT /Overl
52	Regioselektive Allylâ€Allylâ€Kreuzkupplungen ohne Übergangsmetallkatalysator. Angewandte Chemie, 2016, 128, 10658-10662.	2.0	8
53	Initiation Chemistries in Hydrocarbon (Aut)Oxidation. Chemistry - A European Journal, 2015, 21, 14060-14067.	3.3	14
54	Leaving Group Effects on the Selectivity of the Silylation of Alcohols: The Reactivity–Selectivity Principle Revisited. Organic Letters, 2015, 17, 3318-3321.	4.6	18

#	Article	IF	CITATIONS
55	The stability of nitrogen-centered radicals. Organic and Biomolecular Chemistry, 2015, 13, 157-169.	2.8	136
56	Transfer Hydrogenation in Open-Shell Nucleotides — A Theoretical Survey. Molecules, 2014, 19, 21489-21505.	3.8	2
57	The Lewis Base-Catalyzed Silylation of Alcohols—A Mechanistic Analysis. Journal of Organic Chemistry, 2014, 79, 8348-8357.	3.2	67
58	Unprecedented Strong Lewis Bases—Synthesis and Methyl Cation Affinities of Dimethylamino‧ubstituted Terpyridines. Angewandte Chemie - International Edition, 2014, 53, 7647-7651.	13.8	24
59	Inductive Effects through Alkyl Groups – How Long is Long Enough?. European Journal of Organic Chemistry, 2013, 2013, 5423-5430.	2.4	31
60	Dissociation energies of Cα–H bonds in amino acids – a re-examination. RSC Advances, 2013, 3, 12403.	3.6	17
61	Annelated Pyridines as Highly Nucleophilic and Lewis Basic Catalysts for Acylation Reactions. Chemistry - A European Journal, 2013, 19, 6435-6442.	3.3	34
62	The Azaâ€Morita–Baylis–Hillman Reaction: A Mechanistic and Kinetic Study. Chemistry - A European Journal, 2013, 19, 6429-6434.	3.3	24
63	Theoretical Prediction of Selectivity in Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral DMAP Derivatives. Journal of the American Chemical Society, 2012, 134, 9390-9399.	13.7	80
64	Hydrogen Transfer in SAMâ€Mediated Enzymatic Radical Reactions. Chemistry - A European Journal, 2012, 18, 16463-16472.	3.3	24
65	The aza-Morita–Baylis–Hillman reaction of electronically and sterically deactivated substrates. Organic and Biomolecular Chemistry, 2012, 10, 3210.	2.8	19
66	Cation affinity numbers of Lewis bases. Beilstein Journal of Organic Chemistry, 2012, 8, 1406-1442.	2.2	36
67	The Catalytic Potential of Substituted Pyridines in Acylation Reactions: Theoretical Prediction and Experimental Validation. ChemCatChem, 2012, 4, 559-566.	3.7	16
68	Theoretical studies of 31P NMR spectral properties of phosphanes and related compounds in solution. Physical Chemistry Chemical Physics, 2011, 13, 5150.	2.8	39
69	Organocatalysis: acylation catalysts. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 601-619.	14.6	28
70	Immobilized DMAP Derivatives Rivaling Homogeneous DMAP. European Journal of Organic Chemistry, 2011, 2011, 1527-1533.	2.4	38
71	The Stability of C α Peptide Radicals: Why Glycyl Radical Enzymes?. Chemistry - A European Journal, 2011, 17, 3781-3789.	3.3	38
72	Radical stability and its role in synthesis and catalysis. Organic and Biomolecular Chemistry, 2010, 8, 3609.	2.8	158

#	Article	IF	CITATIONS
73	Borane–Lewis Base Complexes as Homolytic Hydrogen Atom Donors. Chemistry - A European Journal, 2010, 16, 6861-6865.	3.3	75
74	Marcus Analysis of Ambident Reactivity. Angewandte Chemie - International Edition, 2010, 49, 5165-5169.	13.8	54
75	Methyl cation affinity (MCA) values for phosphanes. Journal of Physical Organic Chemistry, 2010, 23, 1036-1042.	1.9	22
76	The Catalytic Potential of 4-Guanidinylpyridines in Acylation Reactions. Synthesis, 2009, 2009, 2009, 2267-2277.	2.3	12
77	The performance of computational techniques in locating the charge separated intermediates in organocatalytic transformations. Journal of Computational Chemistry, 2009, 30, 2617-2624.	3.3	19
78	Assessment of theoretical methods for the calculation of methyl cation affinities. Journal of Computational Chemistry, 2008, 29, 291-297.	3.3	39
79	Methyl Cation Affinities of Commonly Used Organocatalysts. Journal of the American Chemical Society, 2008, 130, 3473-3477.	13.7	70
80	Modular Design of Pyridine-Based Acyl-Transfer Catalysts. Synthesis, 2007, 2007, 1185-1196.	2.3	12
81	Nucleophilicities and Carbon Basicities of Pyridines. Chemistry - A European Journal, 2007, 13, 336-345.	3.3	125
82	Hydroxylic Solvents as Hydrogen Atom Donors in Radical Reactions. European Journal of Organic Chemistry, 2007, 2007, 5817-5820.	2.4	24
83	Stacking interactions as the principal design element in acyl-transfer catalysts. Organic and Biomolecular Chemistry, 2006, 4, 4223.	2.8	40
84	Steric Effects in the Uncatalyzed and DMAP-Catalyzed Acylation of Alcohols—Quantifying the Window of Opportunity in Kinetic Resolution Experiments. Chemistry - A European Journal, 2006, 12, 5779-5784.	3.3	74
85	The DMAP-Catalyzed Acetylation of Alcohols—A Mechanistic Study (DMAP=4-(Dimethylamino)pyridine). Chemistry - A European Journal, 2005, 11, 4751-4757.	3.3	269
86	Catalysis of aminolysis ofp-nitrophenyl acetate by 2-pyridones. Journal of Physical Organic Chemistry, 2005, 18, 901-907.	1.9	17
87	The Stability of Acylpyridinium Cations and Their Relation to the Catalytic Activity of Pyridine Bases. Synthesis, 2005, 2005, 1425-1430.	2.3	10
88	Enhancing the Catalytic Activity of 4-(Dialkylamino)pyridines by Conformational Fixation. Angewandte Chemie - International Edition, 2003, 42, 4826-4828.	13.8	106
89	β-Phosphatoxyalkyl Radical Reactions:  Competing Phosphate Migration and Phosphoric Acid Elimination from a Radical Cationâ^'Phosphate Anion Pair Formed by Heterolytic Fragmentation. Journal of the American Chemical Society, 1999, 121, 10685-10694.	13.7	62
90	Radicals in enzymatic catalysis—a thermodynamic perspective. Faraday Discussions, 0, 145, 301-313.	3.2	37