
Jian-yong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2649944/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	High energy beam energy measurement with microwave–electron Compton backscattering. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026, 166216.	1.6	2
2	Pillararene for fluorescence detection of <i>n</i> -alkane vapours. Materials Chemistry Frontiers, 2021, 5, 7910-7920.	5.9	4
3	Self-sorting multimetal–organic gel electrocatalysts for a highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 17451-17458.	10.3	21
4	Supported Metal Nanoparticles in Metalâ€Organic Monoliths for Assembly of a Catalytic Microfluidic Reactor. ChemNanoMat, 2021, 7, 334-340.	2.8	4
5	Synthesis of a Stable Benzoxazole Gel from an Imine Gel for Adsorption and Catalysis. Langmuir, 2021, 37, 5531-5539.	3.5	5
6	Selfâ€Foaming Metalâ€Organic Gels Based on Phytic Acid and Their Mechanical, Moldable, and Loadâ€Bearing Properties Chemistry - A European Journal, 2021, 27, 8791-8798.	3.3	12
7	Effective adsorption of arsenate, dyes and eugenol from aqueous solutions by cationic supramolecular gel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126238.	4.7	10
8	Phytic Acidâ€Based FeCo Bimetallic Metalâ€Organic Gels for Electrocatalytic Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2021, 16, 3213-3220.	3.3	13
9	Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127347.	4.7	6
10	A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. New Journal of Chemistry, 2021, 45, 13021-13028.	2.8	5
11	Imidazolium-functionalized stable gel materials for efficient adsorption of phenols from aqueous solutions. Environmental Technology and Innovation, 2020, 17, 100511.	6.1	11
12	Continuous flow synthesis of porous materials. Chinese Chemical Letters, 2020, 31, 1448-1461.	9.0	28
13	Zrâ€Based Metalâ€Organic Framework Films Grown on Bioâ€Template for Photoelectrocatalysis. ChemistrySelect, 2020, 5, 13855-13861.	1.5	6
14	UiO-67 metal–organic gel material deposited on photonic crystal matrix for photoelectrocatalytic hydrogen production. RSC Advances, 2020, 10, 14778-14784.	3.6	13
15	The circular electron–positron collider beam energy measurement with Compton scattering and beam tracking method. Review of Scientific Instruments, 2020, 91, 033109.	1.3	5
16	Annealing restoration of HPGe detector. Radiation Detection Technology and Methods, 2020, 4, 106-109.	0.8	1
17	Electrochemical Activation of Heterometallic Nanofibers for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 2393-2401.	5.0	12
18	lmine Gels Based on Ferrocene and Porphyrin and Their Electrocatalytic Property. Chemistry - an Asian Journal, 2020, 15, 1963-1969.	3.3	12

#	Article	IF	CITATIONS
19	Confinement of a Au–N-heterocyclic carbene in a Pd ₆ L ₁₂ metal–organic cage. RSC Advances, 2020, 10, 39323-39327.	3.6	4
20	Zirconium-based metal–organic framework gels for selective luminescence sensing. RSC Advances, 2020, 10, 44912-44919.	3.6	15
21	<i>i,,</i> Physics at BESIII. , 2020, , .		0
22	Platinum nanoparticles confined in imidazolium-based ionic polymer for assembling a microfluidic reactor with enhanced catalytic activity. Applied Catalysis A: General, 2019, 585, 117186.	4.3	10
23	Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112025.	3.9	42
24	Hierarchical Gelation of a Pd12L24 Metal–Organic Cage Regulated by Cholesteryl Groups. Inorganic Chemistry, 2019, 58, 10019-10027.	4.0	17
25	Perylene Diimide Based Imine Cages for Inclusion of Aromatic Guest Molecules and Visible‣ight Photocatalysis. ChemPhotoChem, 2019, 3, 1014-1019.	3.0	19
26	Post-modified porphyrin imine gels with improved chemical stability and efficient heterogeneous activity in CO ₂ transformation. New Journal of Chemistry, 2019, 43, 10017-10024.	2.8	13
27	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	38.1	103
28	Efficient Removal of Copper Ion from Wastewater Using a Stable Chitosan Gel Material. Molecules, 2019, 24, 4205.	3.8	33
29	Stability, Stimuliâ€Responsiveness, and Versatile Sorption Properties of a Dynamic Covalent Acylhydrazone Gel. Global Challenges, 2019, 3, 1800073.	3.6	2
30	Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal–organic framework. IUCrJ, 2019, 6, 85-95.	2.2	10
31	\$ï"\$ lepton mass measurement at BESIII. , 2019, , .		1
32	A tetraphenylethylene-based acylhydrazone gel for selective luminescence sensing. Chemical Communications, 2018, 54, 3045-3048.	4.1	41
33	The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers. Journal of Materials Chemistry A, 2018, 6, 6130-6154.	10.3	66
34	Porphyrin-based imine gels for enhanced visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 3195-3201.	10.3	36
35	Gold nanoparticles confined in imidazolium-based porous organic polymers to assemble a microfluidic reactor: controllable growth and enhanced catalytic activity. Journal of Materials Chemistry A, 2018, 6, 2115-2121.	10.3	37
36	Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna. Nanotechnology, 2018, 29, 06LT01.	2.6	6

#	Article	IF	CITATIONS
37	The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 2018, 6, 1887-1899.	10.3	452
38	Gel Chemistry. Lecture Notes in Quantum Chemistry II, 2018, , .	0.3	14
39	Metal–Organic Gels. Lecture Notes in Quantum Chemistry II, 2018, , 61-118.	0.3	4
40	Dynamic Covalent Gels. Lecture Notes in Quantum Chemistry II, 2018, , 119-151.	0.3	2
41	Polymer Gels. Lecture Notes in Quantum Chemistry II, 2018, , 153-189.	0.3	0
42	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	10.0	133
43	From Zeolitic Imidazolate Frameworkâ€8 to Metalâ€Organic Frameworks (<scp>MOF</scp> s): Representative Substance for the General Study of Pioneering <scp>MOF</scp> Applications. Energy and Environmental Materials, 2018, 1, 209-220.	12.8	45
44	Applications of Porous Metal–Organic Framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Crystal Growth and Design, 2018, 18, 7730-7744.	3.0	51
45	Covalently Modified Electrode with Pt Nanoparticles Encapsulated in Porous Organic Polymer for Efficient Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 6477-6482.	5.0	13
46	Incorporation of Functional Groups Expands the Applications of UiOâ€67 for Adsorption, Catalysis and Thiols Detection. ChemistrySelect, 2018, 3, 7066-7080.	1.5	12
47	Transforming HKUSTâ€1 Metal–Organic Frameworks into Gels – Stimuliâ€Responsiveness and Morphology Evolution. European Journal of Inorganic Chemistry, 2017, 2017, 2580-2584.	2.0	15
48	Trace-doped metal–organic gels with remarkably enhanced luminescence. RSC Advances, 2017, 7, 37194-37199.	3.6	18
49	Measurement of the ripple of magnet power supply and its effect to the beam energy. Radiation Detection Technology and Methods, 2017, 1, 1.	0.8	3
50	Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chinese Chemical Letters, 2017, 28, 168-183.	9.0	33
51	Porous gel materials assembled from small molecules. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1332-C1332.	0.1	0
52	Metal–Organic Gel Material Based on UiOâ€66â€NH ₂ Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2016, 11, 2278-2283.	3.3	56
53	Impregnation of metal ions into porphyrin-based imine gels to modulate guest uptake and to assemble a catalytic microfluidic reactor. Journal of Materials Chemistry A, 2016, 4, 8328-8336.	10.3	26
54	Gelation of Luminescent Supramolecular Cages and Transformation to Crystals with Trace-Doped-Enhancement Luminescence. Langmuir, 2016, 32, 12184-12189.	3.5	15

#	Article	IF	CITATIONS
55	Upgrade of beam energy measurement system at BEPC-II. Chinese Physics C, 2016, 40, 076001.	3.7	8
56	Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis. Inorganic Chemistry Frontiers, 2016, 3, 702-710.	6.0	30
57	A luminescent silver–phosphine tetragonal cage based on tetraphenylethylene. Dalton Transactions, 2016, 45, 1668-1673.	3.3	33
58	A new TPE-based tetrapodal ligand and its Ln(<scp>iii</scp>) complexes: multi-stimuli responsive AIE (aggregation-induced emission)/ILCT(intraligand charge transfer)-bifunctional photoluminescence and NIR emission sensitization. Dalton Transactions, 2016, 45, 943-950.	3.3	67
59	Frontispiece: Creating Coordination-Based Cavities in a Multiresponsive Supramolecular Gel. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
60	Highly porous aerogels based on imine chemistry: syntheses and sorption properties. Journal of Materials Chemistry A, 2015, 3, 10990-10998.	10.3	56
61	A two-dimensional flexible porous coordination polymer based on Co(<scp>ii</scp>) and terpyridyl phosphine oxide. Inorganic Chemistry Frontiers, 2015, 2, 388-394.	6.0	9
62	Creating Coordinationâ€Based Cavities in a Multiresponsive Supramolecular Gel. Chemistry - A European Journal, 2015, 21, 7418-7427.	3.3	57
63	A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry. Chemical Science, 2015, 6, 2292-2296.	7.4	47
64	Supramolecular gels in crystal engineering. CrystEngComm, 2015, 17, 7976-7977.	2.6	31
65	Coordinationâ€Ðriven Terpyridyl Phosphine Pd(II) Gels. Chinese Journal of Chemistry, 2015, 33, 141-146.	4.9	6
66	Porous organic–inorganic hybrid aerogels based on bridging acetylacetonate. Microporous and Mesoporous Materials, 2014, 187, 108-113.	4.4	21
67	A Multistimuliâ€Responsive Photochromic Metalâ€Organic Gel. Advanced Materials, 2014, 26, 2072-2077.	21.0	135
68	Surface modification of supramolecular nanotubes and selective guest capture. New Journal of Chemistry, 2014, 38, 3755-3761.	2.8	5
69	A dynamic covalent imine gel as a luminescent sensor. Chemical Communications, 2014, 50, 11942-11945.	4.1	56
70	Guest uptake and heterogeneous catalysis of a porous Pd(II) N -heterocyclic carbene polymer. Journal of Molecular Catalysis A, 2014, 394, 33-39.	4.8	25
71	A novel metal–organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15406.	10.3	45
72	Tetraphenylethylene-based phosphine: tuneable emission and carbon dioxide fixation. Dalton Transactions, 2014, 43, 15785-15790.	3.3	29

#	Article	IF	CITATIONS
73	Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 2014, 43, 6011-6061.	38.1	2,540
74	Luminescent metal–organic gels with tetraphenylethylene moieties: porosity and aggregation-induced emission. RSC Advances, 2013, 3, 16340.	3.6	36
75	A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Communications, 2013, 4, 1774.	12.8	310
76	Metal-organic gels: From discrete metallogelators to coordination polymers. Coordination Chemistry Reviews, 2013, 257, 1373-1408.	18.8	297
77	Two-Dimensional Charge-Separated Metal–Organic Framework for Hysteretic and Modulated Sorption. Inorganic Chemistry, 2013, 52, 4198-4204.	4.0	35
78	On Two Cryogenic Systems of High Purity Germanium Detector. Detection, 2013, 01, 13-20.	0.8	3
79	A scenario for high accuracy Ï" mass measurement at BEPC-II. Chinese Physics C, 2012, 36, 573-577.	3.7	13
80	A nanocomposite gel based on 1D coordination polymers and nanoclusters reversibly gelate water upon heating. RSC Advances, 2012, 2, 12718.	3.6	17
81	Porous organic–inorganic hybrid aerogels based on Cr ³⁺ /Fe ³⁺ and rigid bridging carboxylates. Journal of Materials Chemistry, 2012, 22, 1862-1867.	6.7	87
82	Piezofluorochromism and morphology of a new aggregation-induced emission compound derived from tetraphenylethylene and carbazole. New Journal of Chemistry, 2012, 36, 685-693.	2.8	100
83	Luminescent coordination polymer gels based on rigid terpyridyl phosphine and Ag(i). Dalton Transactions, 2012, 41, 3616.	3.3	24
84	Axially chiral metal–organic frameworks produced from spontaneous resolution with an achiral pyridyl dicarboxylate ligand. CrystEngComm, 2012, 14, 63-66.	2.6	51
85	Three-Dimensional Phosphine Metal–Organic Frameworks Assembled from Cu(I) and Pyridyl Diphosphine. Chemistry of Materials, 2012, 24, 480-485.	6.7	63
86	A Microporous 1D Heterometallic Coordination Polymer Based on Phosphine–Ag5Cl4 Saddle Unit. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 686-691.	3.7	1
87	Structures and luminescent properties of Tb(III) and Tb(III)–Ni(II) coordination polymers based on pyridyl dicarboxylate. Inorganica Chimica Acta, 2012, 388, 16-21.	2.4	17
88	Discrete Ag6L6 coordination nanotubular structures based on a T-shaped pyridyl diphosphine. Chemical Communications, 2011, 47, 3849.	4.1	29
89	Nanotubular Metalâ~'Organic Frameworks with High Porosity Based on T-Shaped Pyridyl Dicarboxylate Ligands. Inorganic Chemistry, 2011, 50, 1743-1748.	4.0	104
90	Anion-tuned sorption and catalytic properties of a soft metal–organic solid with polycatenated frameworks. Journal of Materials Chemistry, 2011, 21, 7098.	6.7	66

#	Article	IF	CITATIONS
91	Piezofluorochromic Properties and Mechanism of an Aggregation-Induced Emission Enhancement Compound Containing <i>N</i> -Hexyl-phenothiazine and Anthracene Moieties. Journal of Physical Chemistry B, 2011, 115, 7606-7611.	2.6	259
92	Piezofluorochromic and Aggregationâ€Inducedâ€Emission Compounds Containing Triphenylethylene and Tetraphenylethylene Moieties. Chemistry - an Asian Journal, 2011, 6, 1470-1478.	3.3	150
93	Heterometallic Coordination Polymer Gels Based on a Rigid, Bifunctional Ligand. Chemistry - A European Journal, 2011, 17, 2369-2372.	3.3	25
94	Study of radiation background at the north crossing point of the BEPC II in collision mode. Chinese Physics C, 2011, 35, 642-655.	3.7	6
95	Effects due to a Pu-C source on a HPGe detector and the corresponding neutron shielding. Chinese Physics C, 2011, 35, 660-667.	3.7	2
96	Dynamic functionalised metallogel: An approach to immobilised catalysis with improved activity. Journal of Molecular Catalysis A, 2010, 317, 97-103.	4.8	74
97	Ring-Opening Isomerization Based on the 3-Connecting Node: Formation of a 0-D M ₂ L ₃ Cage, 1-D Loop-and-Chain, and 2-D (6, 3) Network. Crystal Growth and Design, 2010, 10, 4076-4084.	3.0	51
98	Magnetite Nanoparticle-Supported Coordination Polymer Nanofibers: Synthesis and Catalytic Application in Suzuki-Miyaura Coupling. ACS Applied Materials & Interfaces, 2010, 2, 2333-2338.	8.0	63
99	A 2D Ag(I) layered coordination polymer based on pyridyl diphosphine: structure and selective sorption properties via weak C–Hâ∢F/O interactions. CrystEngComm, 2010, 12, 725-729.	2.6	19
100	Pd2L2 metallacycles as molecular containers for small molecules. Dalton Transactions, 2010, 39, 11171.	3.3	22
101	Temperatureâ€Dependent Guestâ€Driven Singleâ€Crystalâ€toâ€Singleâ€Crystal Ligand Exchange in a Twoâ€Fold Interpenetrated Cd ^{II} Grid Network. Chemistry - A European Journal, 2009, 15, 7578-7585.	3.3	73
102	Solvent-free synthesis of a Pd(II) coordination networked complex as reusable catalyst based on 3,5-bis(diphenylphosphino)benzoic acid. Inorganica Chimica Acta, 2009, 362, 3513-3518.	2.4	13
103	Syntheses, structures and bioactivities of cadmium(II) complexes with a tridentate heterocyclic N- and S-ligand. Inorganica Chimica Acta, 2009, 362, 3519-3525.	2.4	22
104	Syntheses, structures and bioactivities of silver(I) complexes with a tridentate heterocyclic N- and S-ligand. Polyhedron, 2009, 28, 145-149.	2.2	51
105	Metal–organic gels as functionalisable supports for catalysis. New Journal of Chemistry, 2009, 33, 1070.	2.8	87
106	Guest Inclusion and Interpenetration Tuning of Cd(II)/Mn(II) Coordination Grid Networks Assembled from a Rigid Linear Diimidazole Schiff Base Ligand. Inorganic Chemistry, 2009, 48, 287-295.	4.0	54
107	Evolution of Spherical Assemblies to Fibrous Networked Pd(II) Metallogels from a Pyridine-Based Tripodal Ligand and Their Catalytic Property. Chemistry of Materials, 2009, 21, 557-563.	6.7	133
108	Guestâ€Inclusion Behavior of Doubleâ€Strand 1D Coordination Polymers Based on <i>N</i> , <i>N′</i> â€Type Schiff Base Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 1702-1711.	2.0	22

#	Article	IF	CITATIONS
109	Assembly of 1D meso coordination polymer from a chiral mononuclear complex by N-deprotonation of the tris(2-benzimidazolyl) ligand. Inorganica Chimica Acta, 2008, 361, 2934-2940.	2.4	19
110	Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center: topological analysis and potential framework porosity. Chemical Communications, 2008, , 356-358.	4.1	78
111	Formation of Disilver(I) Metallacycle and One-Dimensional Polymeric Chain from the Same Mononuclear Building Block: Assembly Mechanism upon Crystallization. Crystal Growth and Design, 2008, 8, 897-905.	3.0	28
112	Silver Telluride Nanotubes Prepared by the Hydrothermal Method. Inorganic Chemistry, 2007, 46, 7403-7409.	4.0	84
113	Zero to Three Dimensional Increase of Silver(I) Coordination Assemblies Controlled by Deprotonation of 1,3,5-Tri(2-benzimidazolyl)benzene and Aggregation of Multinuclear Building Units. Inorganic Chemistry, 2007, 46, 4617-4625.	4.0	83
114	Bright Blueâ€Emitting Ce ³⁺ Complexes with Encapsulating Polybenzimidazole Tripodal Ligands as Potential Electroluminescent Devices. Angewandte Chemie - International Edition, 2007, 46, 7399-7403.	13.8	176
115	The Interplay between Yttrium and Barium or Copper Trifluoroacetates andN-Methyldiethanolamine: Synthesis of a Heterometallic Y3Cu Trifluoroacetate Complex and a Homometallic Ba-TFA 1D Polymer. European Journal of Inorganic Chemistry, 2007, 2007, 602-608.	2.0	31
116	Coordination Assemblies of Metallacyclic, Prismatic and Tubular Molecular Architectures Based on the Nonâ€rigid Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 2997-3010.	2.0	113
117	One-dimensional silver(I) and mercury(II) complexes with 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH). Inorganica Chimica Acta, 2007, 360, 2990-2996.	2.4	25
118	Syntheses and Crystal Structures of Linear and Zigâ€zag 1D Coordination Polymers with Schiffâ€base N,N′â€Type Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 2463-2469.	1.2	6
119	Solution state coordination polymers featuring wormlike macroscopic structures and cage–polymer interconversions. Chemical Communications, 2006, , 4218-4220.	4.1	35
120	Polar Self-Assembly: Steric Effects Leading to Polar Mixed-Ligand Coordination Cages. Chemistry - A European Journal, 2006, 12, 2448-2453.	3.3	42
121	Synthesis, characterization and molecular structures of Cu(II) and Ba(II) fluorinated carboxylate complexes. Polyhedron, 2005, 24, 1185-1195.	2.2	32
122	Synthesis, Characterization and Molecular Structures of Yttrium Trifluoroacetate Complexes with O- and N-Donors: Complexation vs. Hydrolysis. European Journal of Inorganic Chemistry, 2005, 2005, 3928-3935.	2.0	18
123	Effect of Coordinating Solvents on Solution Speciation and the Crystallisation via ROP of a Triphos-Silver Coordination Cage. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 431-437.	3.7	13
124	Interplay between aminoalcohols and trifluoroacetate ligands: Ba–Cu heterometallics or cocrystallization of homometallics?. Inorganic Chemistry Communication, 2004, 7, 979-984.	3.9	30
125	A discrete dimer of coordination clusters connected through additional bridging ligands. Chemical Communications, 2004, , 2808.	4.1	25
126	Reactions of Doubly Bridged Bis(cyclopentadienes) with Iron Pentacarbonyl. Organometallics, 2003, 22, 5543-5555.	2.3	25

#	Article	IF	CITATIONS
127	Tricarbonylrhenium(I) complexes of phosphine-derivatized amines, amino acids and a model peptide: structures, solution behavior and cytotoxicity. Journal of Organometallic Chemistry, 2002, 650, 123-132.	1.8	78
128	Title is missing!. Transition Metal Chemistry, 2002, 27, 58-61.	1.4	7
129	Synthesis and structures of doubly bridged bis(cyclopentadienyl) tetracarbonyl diiron complexes. Journal of Organometallic Chemistry, 2001, 626, 186-191.	1.8	10