List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2648074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design Optimization of Multishell Luneburg Lenses. IEEE Transactions on Antennas and Propagation, 2007, 55, 283-289.	5.1	102
2	Lens Antenna for Wide Angle Beam Scanning at 79 GHz for Automotive Short Range Radar Applications. IEEE Transactions on Antennas and Propagation, 2017, 65, 2041-2046.	5.1	94
3	A Transparent and Flexible Polymer-Fabric Tissue UWB Antenna for Future Wireless Networks. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1333-1336.	4.0	87
4	Ka-Band Phased Array Antenna for High-Data-Rate SATCOM. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 256-259.	4.0	67
5	Sub-THz Antenna for High-Speed Wireless Communication Systems. International Journal of Antennas and Propagation, 2019, 2019, 1-9.	1.2	58
6	Comparative Design and Analysis of Luneburg and Half Maxwell Fish-Eye Lens Antennas. IEEE Transactions on Antennas and Propagation, 2008, 56, 3058-3062.	5.1	56
7	Flexible Convoluted Ring Shaped FSS for X-Band Screening Application. IEEE Access, 2018, 6, 11657-11665.	4.2	55
8	Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials. Materials, 2016, 9, 825.	2.9	54
9	Performance and Radiation Patterns of a Reconfigurable Plasma Corner-Reflector Antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1137-1140.	4.0	51
10	Large and Optically Transparent Multilayer for Broadband H-Shaped Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 933-936.	4.0	39
11	Sub-THz Circularly Polarized Horn Antenna Using Wire Electrical Discharge Machining for 6G Wireless Communications. IEEE Access, 2020, 8, 117245-117252.	4.2	39
12	Technological Process to Control the Foam Dielectric Constant Application to Microwave Components and Antennas. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 938-942.	2.5	35
13	Wideband Omnidirectional and Compact Antenna for VHF/UHF Band. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 3-6.	4.0	33
14	RADIOFREQUENCY PERFORMANCES OF TRANSPARENT ULTRA-WIDEBAND ANTENNAS. Progress in Electromagnetics Research C, 2011, 22, 259-271.	0.9	32
15	Mechanically Pattern-Reconfigurable Bended Horn Antenna for High-Power Applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 457-460.	4.0	32
16	Reconfigurable SIW Antenna for Fixed Frequency Beam Scanning and 5G Applications. IEEE Access, 2020, 8, 60084-60089.	4.2	32
17	An Active Reconfigurable Antenna at 60 GHz Based on Plate Inhomogeneous Lens and Feeders. IEEE Transactions on Antennas and Propagation, 2013, 61, 1672-1678.	5.1	31
18	Off-Axis Performances of Half Maxwell Fish-Eye Lens Antennas at 77 GHz. IEEE Transactions on Antennas and Propagation, 2007, 55, 479-482.	5.1	27

#	Article	IF	CITATIONS
19	A Novel Broadband Eighth-Wave Conical Antenna. IEEE Transactions on Antennas and Propagation, 2008, 56, 2112-2116.	5.1	27
20	Scattering of Spherically and Hemispherically Stratified Lenses Fed by Any Real Source. IEEE Transactions on Antennas and Propagation, 2008, 56, 450-460.	5.1	26
21	FOAM BASED LUNEBURG LENS ANTENNA AT 60 GHZ. Progress in Electromagnetics Research Letters, 2014, 44, 1-7.	0.7	26
22	A 300-GHz low-cost high-gain fully metallic Fabry–Perot cavity antenna for 6G terahertz wireless communications. Scientific Reports, 2021, 11, 7703.	3.3	25
23	Single Layered \$4imes4\$ Butler Matrix Without Phase-Shifters and Crossovers. IEEE Access, 2018, 6, 77289-77298.	4.2	23
24	An Improved Fabrication Technique for the 3-D Frequency Selective Surface based on Water Transfer Printing Technology. Scientific Reports, 2020, 10, 1714.	3.3	22
25	Reconfigurable metamaterial structure for 5G beam tilting antenna applications. Waves in Random and Complex Media, 2021, 31, 2089-2102.	2.7	22
26	High Capacity and Miniaturized Flexible Chipless RFID Tag Using Modified Complementary Split Ring Resonator. IEEE Access, 2021, 9, 33929-33943.	4.2	21
27	A Circularly Polarized Sub-Terahertz Antenna With Low-Profile and High-Gain for 6G Wireless Communication Systems. IEEE Access, 2021, 9, 122607-122617.	4.2	19
28	HIS-EBG UNIT CELLS FOR PATTERN AND FREQUENCY RECONFIGURABLE DUAL BAND ARRAY ANTENNA. Progress in Electromagnetics Research M, 2018, 76, 123-132.	0.9	18
29	Slotted waveguide antenna with a nearâ€field focused beam in one plane. IET Microwaves, Antennas and Propagation, 2015, 9, 634-639.	1.4	17
30	Improvement of 60 GHz Transparent Patch Antenna Array Performance Through Specific Double-Sided Micrometric Mesh Metal Technology. IEEE Access, 2019, 7, 2256-2262.	4.2	17
31	Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 726-729.	4.0	16
32	A Passive Compressive Device Associated With a Luneburg Lens for Multibeam Radar at Millimeter Wave. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 938-941.	4.0	16
33	Reconfigurable Radiation Pattern of Planar Antenna Using Metamaterial for 5G Applications. Materials, 2020, 13, 582.	2.9	16
34	Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	15
35	Flexible conductive fabric/Eâ€glass fibre composite ultraâ€wideband antenna for future wireless networks. IET Microwaves, Antennas and Propagation, 2019, 13, 455-459.	1.4	15
36	Mesh parameters influence on transparent and active antennas performance at microwaves. AIP Advances, 2017, 7, .	1.3	14

3

#	Article	IF	CITATIONS
37	Compact Four-Element Phased Antenna Array for 5G Applications. IEEE Access, 2019, 7, 161103-161111.	4.2	12
38	Design of Coplanar Slotted SIW Antenna Arrays for Beam-Tilting and 5G Applications. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 4-8.	4.0	12
39	PERFORMANCE OF A LOZENGE MONOPOLE ANTENNA MADE OF PURE COMPOSITE LAMINATE. Progress in Electromagnetics Research Letters, 2012, 35, 115-123.	0.7	10
40	Fresnel Lens at Millimeter-Wave: Enhancement of Efficiency and Radiation Frequency Bandwidth. IEEE Transactions on Antennas and Propagation, 2017, 65, 5776-5786.	5.1	10
41	Displacement-Tolerant Printed Spiral Resonator With Capacitive Compensated-Plates for Non-Radiative Wireless Energy Transfer. IEEE Access, 2019, 7, 10037-10044.	4.2	10
42	Quasi-Unidirectional Radiation Pattern of Monopole Coupled Loop Antenna. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 732-735.	4.0	9
43	Membrane Antenna Arrays Fed by Substrate Integrated Waveguide for V-Band Communication. Microwave and Optical Technology Letters, 2013, 55, 1746-1752.	1.4	9
44	Hexa-band printed monopole antenna for wireless applications. Microwave and Optical Technology Letters, 2017, 59, 2816-2822.	1.4	9
45	FLEXIBLE AND CONFORMAL PRINTED MONOPOLES ANTENNAS. Progress in Electromagnetics Research Letters, 2017, 67, 89-95.	0.7	9
46	Circuit Modeling of a Small Broadband Conical Antenna. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 96-99.	4.0	8
47	Low-Return-Loss Printed Log-Periodic Dipole Antenna. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 503-506.	4.0	8
48	Reconfigurable Radiating Antenna Array Using Plasma Tubes. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1321-1324.	4.0	8
49	A Compact Double-Sided FSS Absorbing Wall for Decoupling 5G Antenna Arrays. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 303-314.	2.2	8
50	LOW COST 60 GHZ NEW THIN PYRALUX MEMBRANE ANTENNAS FED BY SUBSTRATE INTEGRATED WAVEGUIDE. Progress in Electromagnetics Research B, 2012, 42, 207-224.	1.0	7
51	Compact Wide-Angle Scanning Multibeam Antenna Array for V2X Communications. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2141-2145.	4.0	7
52	Efficient and high-gain aperture coupled superstrate antenna arrays for 60 GHz indoor communication systems. Microwave and Optical Technology Letters, 2010, 52, 2352-2356.	1.4	6
53	Flat foam-based Mikaelian lens antenna for millimeter wave applications. , 2014, , .		6
54	Nantenna for Standard 1550 nm Optical Communication Systems. International Journal of Antennas and Propagation, 2016, 2016, 1-9.	1.2	6

#	Article	IF	CITATIONS
55	INVESTIGATION ON AN EFFECTIVE MAGNETIC PERMEABILITY OF THE ROD-SHAPED FERRITES. Progress in Electromagnetics Research Letters, 2017, 65, 43-48.	0.7	6
56	Wideband and high efficient aperture antenna with superstrate for 60 GHz indoor communication systems. , 2010, , .		5
57	Synthesis of Sparse Planar Arrays for Passive Imaging Systems Based on Switch Submatrix. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 1007-1011.	3.1	5
58	RECONFIGURABLE CYLINDRICAL PLASMA ANTENNA. Progress in Electromagnetics Research M, 2018, 66, 65-72.	0.9	5
59	Passive Compressive Device in an MIMO Configuration at Millimeter Waves. IEEE Transactions on Antennas and Propagation, 2018, 66, 5558-5568.	5.1	5
60	Dual mode modified double square ring resonator structure at 76 GHz. Microwave and Optical Technology Letters, 2019, 61, 1678-1682.	1.4	5
61	Structural composite laminate materials with low dielectric loss: Theoretical model towards dielectric characterization. Composites Part C: Open Access, 2020, 3, 100050.	3.2	5
62	Reconfigurable Microstrip Antennas in Millimeter Waves. , 2006, , .		4
63	Design and characterization of a foam-based Mikaelian lens antennas in millimeter waves. International Journal of Microwave and Wireless Technologies, 2015, 7, 769-773.	1.9	4
64	Optimising a nantenna array at 1550Ânm band. Micro and Nano Letters, 2016, 11, 779-782.	1.3	4
65	Millimeter-Wave Fresnel Zone Plate Lens with new technological process. International Journal of Microwave and Wireless Technologies, 2017, 9, 939-944.	1.9	4
66	Beamwidth Control of a Helical Antenna Using Truncated Conical Plasma Reflectors. , 2020, , .		4
67	A tactical broadband omnidirectional antenna. , 2008, , .		3
68	FREQUENCY TUNABLE ANTENNA FOR DIGITAL VIDEO BROADCASTING HAND-HELD APPLICATION. Progress in Electromagnetics Research Letters, 2011, 24, 1-8.	0.7	3
69	60 GHz membrane supported aperture coupled patch antenna based on FR4 and new thin Pyralux substrate. , 2012, , .		3
70	NEAR-FIELD FOCUSING IN ONE PLANE USING A LOADED SECTORAL HORN ANTENNA. Progress in Electromagnetics Research Letters, 2013, 37, 113-122.	0.7	3
71	Flat foam-based Mikaelian lens antenna for millimeter wave applications. , 2014, , .		3
72	1×2 Equilateral Triangular Dielectric Resonator Nantenna array for optical communication. , 2016, , .		3

#	Article	IF	CITATIONS
73	Performances of monopole plasma antenna. , 2017, , .		3
74	MECHANICALLY RECONFIGURABLE RADIATION PATTERN SLOT ANTENNA ARRAY FEEDED BY BENDED SECTORAL HORN AND METALIZED WOOD SPLITTER. Progress in Electromagnetics Research C, 2017, 72, 159-165.	0.9	3
75	Comparison of the Microwave Performance of Transparent Monopole Antennas Made of Different Transparent Conducting Films. , 2018, , .		3
76	Yagiâ€Uda nantenna for 1550 nanometers optical communication systems. Microwave and Optical Technology Letters, 2018, 60, 2236-2242.	1.4	3
77	Beam-Steerable Helical Antenna Using Plasma Reflectors. , 2022, , .		3
78	Passive millimeter wave imaging: 2D sparse array optimization for low cost system architecture. , 2012, , .		2
79	Compact Dual-Linear Polarized Wideband Antenna for VHF/UHF Band. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 801-804.	4.0	2
80	Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting. International Journal of Antennas and Propagation, 2015, 2015, 1-10.	1.2	2
81	Hexagonal dielectric loaded nantenna for optical ITU-T C-band communication. , 2015, , .		2
82	LOW-PROFILE AND SMALL CAPACITIVELY FED VHF ANTENNA. Progress in Electromagnetics Research Letters, 2016, 60, 31-38.	0.7	2
83	A simple setup to measure the realized gain of miniaturized antennas in the HF band. , 2016, , .		2
84	Beam-scanning SIW antennas based on association of various shaped slots. , 2017, , .		2
85	Flexible and conformal printed monopoles for reconfigurable antennas. , 2017, , .		2
86	Inhomogeneous Lens Antenna using Pressed Foam Technological Process in MM Wave Range. , 2018, , .		2
87	Design of Parallel-series Microstrip Patch Antenna Array at mmWave, for future 5G applications. , 2019, , .		2
88	Millimeter Wave Microstrip Antenna with CSRR for 5G Application. , 2021, , .		2
89	Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection. Electronics (Switzerland), 2021, 10, 527.	3.1	2
90	A Novel Reduced-Height Broadband Monopole. , 2008, , .		1

#	Article	IF	CITATIONS
91	A 2D synthetic aperture radiometry demonstrator by switching strategy at X band. , 2013, , .		1
92	Light and cheap flat foam-based Luneburg lens antenna. , 2014, , .		1
93	SIMPLE APPROACH TO MINIATURIZED ANTENNA GAIN MEASUREMENT USING A PARALLEL PLATE CELL IN THE HF BAND. Progress in Electromagnetics Research M, 2016, 46, 11-18.	0.9	1
94	A wideband conformal flexible monopole antenna. , 2017, , .		1
95	A New Design of Reconfigurable SIW Antenna Conformal to Cylindrical Surface. , 2018, , .		1
96	Localization of unknown electromagnetic source using 3D-antenna arrays. International Journal of Microwave and Wireless Technologies, 2020, 12, 86-94.	1.9	1
97	Experimental Realization of Sub-THz Circularly Polarized Antenna Based on Metasurface Superstrate at 300 GHz. Materials, 2021, 14, 4796.	2.9	1
98	Optically Transparent Tri-Wideband Mosaic Frequency Selective Surface with Low Cross-Polarisation. Materials, 2022, 15, 622.	2.9	1
99	A Low-cost Sub-Terahertz Circularly Polarized Antenna for 6G Wireless Communications. , 2021, , .		1
100	Design of a Discrete Luneburg Lens Fed by Slot-Excited Spherical-Circular Conformal Printed Antenna. , 2002, , .		0
101	Shaped slot waveguide applied to beam scanning antennas. , 2004, , .		0
102	Scattering of stratified lenses illuminated by any real source. , 2007, , .		0
103	Performance of switchable patches array using plasma commercial fluorescent lamps. , 2016, , .		Ο
104	INTERMODULATION DISTORTION AND COMPRESSION POINT MEASUREMENT OF ACTIVE INTEGRATED ANTENNAS USING A RADIATIVE METHOD. Progress in Electromagnetics Research M, 2017, 54, 145-152.	0.9	0
105	ELECTRICALLY RECONFIGURABLE RADIATION PATTERNS OF SLOT ANTENNA ARRAY USING AGILE PLASMA WALL. Progress in Electromagnetics Research C, 2017, 73, 75-80.	0.9	0
106	60GHz optically transparent patch antenna arrays made of double-sided micrometric mesh metal layers. , 2018, , .		0
107	FM antenna with soft visual impact made from micrometric mesh metal technology. , 2018, , .		0
108	Vertical, Horizontal to Circular Polarization Reconfigurable Array Antenna with EBG Unit Cells. , 2019, , .		0

7

#	Article	IF	CITATIONS
109	Reconfigurable Coplanar Slotted SIW Antenna Array for Fixed Frequency Beam Scanning Applications. , 2021, , .		0
110	Integrated Slotted Serpentine Waveguide to Enhance Radiation Properties and Efficiency. IEEE Access, 2022, 10, 51093-51099.	4.2	0
111	Mosaic Frequency Selective Surface with Wideband Response for the Optically Transparent and Absorber Applications. , 2022, , .		Ο
112	New reconfigurable HMSIW associated to horn antenna. , 2022, , .		0