Mauro Tretiach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647908/publications.pdf

Version: 2024-02-01

70 papers

2,293 citations

218677 26 h-index 233421 45 g-index

70 all docs

70 docs citations

times ranked

70

3004 citing authors

#	Article	IF	Citations
1	Photobiont Diversity in Lichen Symbioses From Extreme Environments. Frontiers in Microbiology, 2022, 13, 809804.	3.5	11
2	Is airborne graphene oxide a possible hazard for the sexual reproduction of wind-pollinated plants?. Science of the Total Environment, 2022, 830, 154625.	8.0	5
3	How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany, 2021, 72, 1576-1588.	4.8	24
4	Element accumulation performance of living and dead lichens in a large-scale transplant application. Environmental Science and Pollution Research, 2021, 28, 16214-16226.	5.3	10
5	Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. Environmental Pollution, 2021, 273, 116500.	7.5	3
6	The lichens of the Majella National Park (Central Italy): an annotated checklist. MycoKeys, 2021, 78, 119-168.	1.9	1
7	Enhanced culturing techniques for the mycobiont isolated from the lichen Xanthoria parietina. Mycological Progress, 2021, 20, 797-808.	1.4	7
8	The Interaction of Graphene Oxide with the Pollenâ [*] Stigma System: In Vivo Effects on the Sexual Reproduction of Cucurbita pepo L Applied Sciences (Switzerland), 2021, 11, 6150.	2.5	6
9	Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene. Journal of Hazardous Materials, 2021, 414, 125553.	12.4	17
10	New insight on element bioaccumulation performance of two lichen biomonitors: When morpho-chemical details mark the difference. Science of the Total Environment, 2021, 782, 146360.	8.0	2
11	Phytohormone release by three isolated lichen mycobionts and the effects of indole-3-acetic acid on their compatible photobionts. Symbiosis, 2020, 82, 95-108.	2.3	7
12	Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L Nanomaterials, 2020, 10, 1877.	4.1	5
13	Environmental DNA assessment of airborne plant and fungal seasonal diversity. Science of the Total Environment, 2020, 738, 140249.	8.0	44
14	Abundance and Extracellular Release of Phytohormones in Aeroâ€terrestrial Microalgae (Trebouxiophyceae, Chlorophyta) As a Potential Chemical Signaling Source 1. Journal of Phycology, 2020, 56, 1295-1307.	2.3	19
15	Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials, 2020, 393, 122380.	12.4	14
16	Validation of particulate dispersion models by native lichens as point receptors: a case study from NE Italy. Environmental Science and Pollution Research, 2020, 27, 13384-13395.	5.3	1
17	Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga <i>Trebouxia gelatinosa</i> . Nanotoxicology, 2019, 13, 492-509.	3.0	12
18	Congruence Evaluation of Mercury Pollution Patterns Around a Waste Incinerator over a 16-Year-Long Period Using Different Biomonitors. Atmosphere, 2019, 10, 183.	2.3	9

#	Article	IF	CITATIONS
19	New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere, 2019, 10, 136.	2.3	30
20	Beyond ozone-tolerance: Effects of ozone fumigation on trace element and PAH enriched thalli of the lichen biomonitor Pseudevernia furfuracea. Atmospheric Environment, 2019, 210, 132-142.	4.1	3
21	Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods. Environmental Monitoring and Assessment, 2019, 191, 260.	2.7	8
22	Background element content of the lichen Pseudevernia furfuracea: A supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 2018, 622-623, 282-292.	8.0	16
23	Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology. Environmental Science and Pollution Research, 2018, 25, 8089-8103.	5.3	10
24	Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta, 2018, 247, 705-714.	3.2	10
25	Effects of site-specific climatic conditions on the radial growth of the lichen biomonitor Xanthoria parietina. Environmental Science and Pollution Research, 2018, 25, 34017-34026.	5.3	12
26	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	14.6	438
27	Graphene oxide impairs the pollen performance of <i>Nicotiana tabacum</i> and <i>Corylus avellana</i> suggesting potential negative effects on the sexual reproduction of seed plants. Environmental Science: Nano, 2018, 5, 1608-1617.	4.3	18
28	Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa. Plant Physiology and Biochemistry, 2018, 129, 189-197.	5.8	28
29	DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS ONE, 2018, 13, e0194489.	2.5	62
30	Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy. Science of the Total Environment, 2017, 595, 858-867.	8.0	17
31	Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environmental Science and Pollution Research, 2017, 24, 8004-8016.	5.3	18
32	Melanization Affects the Content of Selected Elements in Parmelioid Lichens. Journal of Chemical Ecology, 2017, 43, 1086-1096.	1.8	14
33	Acetone washing for the removal of lichen substances affects membrane permeability. Lichenologist, 2017, 49, 387-395.	0.8	11
34	Heat shock treatments for the control of lithobionts: A case study with epilithic green microalgae. International Biodeterioration and Biodegradation, 2017, 123, 236-243.	3.9	18
35	Drought versus heat: What's the major constraint on Mediterranean green roof plants?. Science of the Total Environment, 2016, 566-567, 753-760.	8.0	35
36	New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Molecular Biology, 2016, 91, 319-339.	3.9	69

#	Article	IF	CITATIONS
37	Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta, 2015, 242, 493-505.	3.2	36
38	Does shallow substrate improve water status of plants growing on green roofs? Testing the paradox in two sub-Mediterranean shrubs. Ecological Engineering, 2015, 84, 292-300.	3.6	19
39	Seasonal variations of PAHs content and distribution patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea. Atmospheric Environment, 2015, 113, 255-263.	4.1	34
40	<i>Porina pseudohibernica</i> sp. nov., an isidiate, epiphytic lichen from central and south-eastern Europe. Lichenologist, 2014, 46, 617-625.	0.8	10
41	Ozone tolerance in lichens: A possible explanation from biochemical to physiological level using Flavoparmelia caperata as test organism. Journal of Plant Physiology, 2014, 171, 1514-1523.	3.5	12
42	Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Science of the Total Environment, 2014, 475, 90-96.	8.0	43
43	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	13.8	369
44	Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia, 2013, 173, 649-663.	2.0	18
45	Why lichens are bad biomonitors of ozone pollution?. Ecological Indicators, 2013, 34, 391-397.	6.3	12
46	Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecology, 2013, 6, 397-407.	1.6	18
47	Devitalization of poikilohydric lithobionts of open-air monuments by heat shock treatments: A new case study centred on bryophytes. International Biodeterioration and Biodegradation, 2013, 84, 44-53.	3.9	17
48	Hydrogen sulphide inhibits PSII of lichen photobionts. Lichenologist, 2013, 45, 101-113.	0.8	12
49	Heat Shock Treatments: A New Safe Approach against Lichen Growth on Outdoor Stone Surfaces. Environmental Science & Environmental Science & Environmen	10.0	30
50	Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia, 2012, 168, 589-599.	2.0	22
51	Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environmental and Experimental Botany, 2011, 73, 102-107.	4.2	30
52	Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 2011, 175, 589-600.	2.7	41
53	Photosynthesis in chlorolichens: the influence of the habitat light regime. Journal of Plant Research, 2010, 123, 763-775.	2.4	28
54	Chlorophyll a fluorescence as a practical tool for checking the effects of biocide treatments on endolithic lichens. International Biodeterioration and Biodegradation, 2010, 64, 452-460.	3.9	26

#	Article	IF	CITATIONS
55	Species delimitation in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macaronesian region. Lichenologist, 2009, 41, 1-15.	0.8	26
56	In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycological Research, 2009, 113, 1216-1227.	2.5	35
57	Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 2008, 7, 147-160.	1.4	64
58	A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycological Research, 2008, 112, 36-49.	2.5	46
59	Intrathalline Variation of Chlorophyll a Fluorescence Emission in The Epiphytic Lichen Flavoparmelia Caperata. Bryologist, 2008, 111, 455-462.	0.6	14
60	Seasonal variations of <i>F</i> _o , <i>F</i> _m , and <i>F</i> _v / <i>F</i> _m in an epiphytic population of the lichen <i>Punctelia subrudecta</i> (Nyl.) Krog. Lichenologist, 2007, 39, 555-565.	0.8	38
61	Effects of Ambient NOxon ChlorophyllaFluorescence in TransplantedFlavoparmelia caperata(Lichen). Environmental Science & Documental Sci	10.0	29
62	Efficacy of a biocide tested on selected lichens and its effects on their substrata. International Biodeterioration and Biodegradation, 2007, 59, 44-54.	3.9	33
63	Caloplaca badioreagens, a new calcicolous, endolithic lichen from Italy. Lichenologist, 2006, 38, 223-229.	0.8	17
64	A revision of the lichen genus Lepraria s.lat. in Italy. Nova Hedwigia, 2006, 83, 387-430.	0.4	19
65	Isidia ontogeny and its effect on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Lichenologist, 2005, 37, 445-462.	0.8	39
66	Differential land snail damage to selected species of the lichen genus Peltigera. Biochemical Systematics and Ecology, 2004, 32, 127-138.	1.3	23
67	Caloplaca erodens [sect. Pyrenodesmia], a new lichen species from Italy with an unusual thallus type. Mycological Progress, 2003, 2, 127-136.	1.4	20
68	Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist, 2003, 35, 255-270.	0.8	60
69	Hydrogen Sulphide and Epiphytic Lichen Vegetation: a Case Study on Mt. Amiata (Central Italy). Lichenologist, 1999, 31, 163-181.	0.8	12
70	Ecophysiology of calcicolous endolithic lichens: progress and problems. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 159-184.	0.0	27