
Mauro Tretiach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	14.6	438
2	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	13.8	369
3	New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. Plant Molecular Biology, 2016, 91, 319-339.	3.9	69
4	Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 2008, 7, 147-160.	1.4	64
5	DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS ONE, 2018, 13, e0194489.	2.5	62
6	Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist, 2003, 35, 255-270.	0.8	60
7	A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycological Research, 2008, 112, 36-49.	2.5	46
8	Environmental DNA assessment of airborne plant and fungal seasonal diversity. Science of the Total Environment, 2020, 738, 140249.	8.0	44
9	Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: A case study in the Dolomites (Eastern Italian Alps). Science of the Total Environment, 2014, 475, 90-96.	8.0	43
10	Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 2011, 175, 589-600.	2.7	41
11	lsidia ontogeny and its effect on the CO2 gas exchanges of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf. Lichenologist, 2005, 37, 445-462.	0.8	39
12	Seasonal variations of <i>F</i> _o , <i>F</i> _m , and <i>F</i> _v / <i>F</i> _m in an epiphytic population of the lichen <i>Punctelia subrudecta</i> (Nyl.) Krog. Lichenologist, 2007, 39, 555-565.	0.8	38
13	Desiccation tolerance and lichenization: a case study with the aeroterrestrial microalga Trebouxia sp. (Chlorophyta). Planta, 2015, 242, 493-505.	3.2	36
14	In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycological Research, 2009, 113, 1216-1227.	2.5	35
15	Drought versus heat: What's the major constraint on Mediterranean green roof plants?. Science of the Total Environment, 2016, 566-567, 753-760.	8.0	35
16	Seasonal variations of PAHs content and distribution patterns in a mixed land use area: A case study in NE Italy with the transplanted lichen Pseudevernia furfuracea. Atmospheric Environment, 2015, 113, 255-263.	4.1	34
17	Efficacy of a biocide tested on selected lichens and its effects on their substrata. International Biodeterioration and Biodegradation, 2007, 59, 44-54.	3.9	33
18	Effects of the urban environmental conditions on the chlorophyll a fluorescence emission in transplants of three ecologically distinct lichens. Environmental and Experimental Botany, 2011, 73, 102-107.	4.2	30

MAURO TRETIACH

#	Article	IF	CITATIONS
19	Heat Shock Treatments: A New Safe Approach against Lichen Growth on Outdoor Stone Surfaces. Environmental Science & Technology, 2012, 46, 6851-6859.	10.0	30
20	New Interpretative Scales for Lichen Bioaccumulation Data: The Italian Proposal. Atmosphere, 2019, 10, 136.	2.3	30
21	Effects of Ambient NOxon ChlorophyllaFluorescence in TransplantedFlavoparmelia caperata(Lichen). Environmental Science & Technology, 2007, 41, 2978-2984.	10.0	29
22	Photosynthesis in chlorolichens: the influence of the habitat light regime. Journal of Plant Research, 2010, 123, 763-775.	2.4	28
23	Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa. Plant Physiology and Biochemistry, 2018, 129, 189-197.	5.8	28
24	Ecophysiology of calcicolous endolithic lichens: progress and problems. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 159-184.	0.0	27
25	Species delimitation in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macaronesian region. Lichenologist, 2009, 41, 1-15.	0.8	26
26	Chlorophyll a fluorescence as a practical tool for checking the effects of biocide treatments on endolithic lichens. International Biodeterioration and Biodegradation, 2010, 64, 452-460.	3.9	26
27	How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany, 2021, 72, 1576-1588.	4.8	24
28	Differential land snail damage to selected species of the lichen genus Peltigera. Biochemical Systematics and Ecology, 2004, 32, 127-138.	1.3	23
29	Water availability modifies tolerance to photo-oxidative pollutants in transplants of the lichen Flavoparmelia caperata. Oecologia, 2012, 168, 589-599.	2.0	22
30	Caloplaca erodens [sect. Pyrenodesmia], a new lichen species from Italy with an unusual thallus type. Mycological Progress, 2003, 2, 127-136.	1.4	20
31	A revision of the lichen genus Lepraria s.lat. in Italy. Nova Hedwigia, 2006, 83, 387-430.	0.4	19
32	Does shallow substrate improve water status of plants growing on green roofs? Testing the paradox in two sub-Mediterranean shrubs. Ecological Engineering, 2015, 84, 292-300.	3.6	19
33	Abundance and Extracellular Release of Phytohormones in Aeroâ€ŧerrestrial Microalgae (Trebouxiophyceae, Chlorophyta) As a Potential Chemical Signaling Source 1. Journal of Phycology, 2020, 56, 1295-1307.	2.3	19
34	Seasonal acclimation in the epiphytic lichen Parmelia sulcata is influenced by change in photobiont population density. Oecologia, 2013, 173, 649-663.	2.0	18
35	Water relation parameters of six Peltigera species correlate with their habitat preferences. Fungal Ecology, 2013, 6, 397-407.	1.6	18
36	Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environmental Science and Pollution Research, 2017, 24, 8004-8016.	5.3	18

MAURO TRETIACH

#	Article	IF	CITATIONS
37	Heat shock treatments for the control of lithobionts: A case study with epilithic green microalgae. International Biodeterioration and Biodegradation, 2017, 123, 236-243.	3.9	18
38	Graphene oxide impairs the pollen performance of <i>Nicotiana tabacum</i> and <i>Corylus avellana</i> suggesting potential negative effects on the sexual reproduction of seed plants. Environmental Science: Nano, 2018, 5, 1608-1617.	4.3	18
39	Caloplaca badioreagens, a new calcicolous, endolithic lichen from Italy. Lichenologist, 2006, 38, 223-229.	0.8	17
40	Devitalization of poikilohydric lithobionts of open-air monuments by heat shock treatments: A new case study centred on bryophytes. International Biodeterioration and Biodegradation, 2013, 84, 44-53.	3.9	17
41	Biomagnetic monitoring and element content of lichen transplants in a mixed land use area of NE Italy. Science of the Total Environment, 2017, 595, 858-867.	8.0	17
42	Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene. Journal of Hazardous Materials, 2021, 414, 125553.	12.4	17
43	Background element content of the lichen Pseudevernia furfuracea: A supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 2018, 622-623, 282-292.	8.0	16
44	Intrathalline Variation of Chlorophyll a Fluorescence Emission in The Epiphytic Lichen Flavoparmelia Caperata. Bryologist, 2008, 111, 455-462.	0.6	14
45	Melanization Affects the Content of Selected Elements in Parmelioid Lichens. Journal of Chemical Ecology, 2017, 43, 1086-1096.	1.8	14
46	Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials, 2020, 393, 122380.	12.4	14
47	Hydrogen Sulphide and Epiphytic Lichen Vegetation: a Case Study on Mt. Amiata (Central Italy). Lichenologist, 1999, 31, 163-181.	0.8	12
48	Why lichens are bad biomonitors of ozone pollution?. Ecological Indicators, 2013, 34, 391-397.	6.3	12
49	Hydrogen sulphide inhibits PSII of lichen photobionts. Lichenologist, 2013, 45, 101-113.	0.8	12
50	Ozone tolerance in lichens: A possible explanation from biochemical to physiological level using Flavoparmelia caperata as test organism. Journal of Plant Physiology, 2014, 171, 1514-1523.	3.5	12
51	Effects of site-specific climatic conditions on the radial growth of the lichen biomonitor Xanthoria parietina. Environmental Science and Pollution Research, 2018, 25, 34017-34026.	5.3	12
52	Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga <i>Trebouxia gelatinosa</i> . Nanotoxicology, 2019, 13, 492-509.	3.0	12
53	Acetone washing for the removal of lichen substances affects membrane permeability. Lichenologist, 2017, 49, 387-395.	0.8	11
54	Photobiont Diversity in Lichen Symbioses From Extreme Environments. Frontiers in Microbiology, 2022, 13, 809804.	3.5	11

MAURO TRETIACH

#	Article	IF	CITATIONS
55	<i>Porina pseudohibernica</i> sp. nov., an isidiate, epiphytic lichen from central and south-eastern Europe. Lichenologist, 2014, 46, 617-625.	0.8	10
56	Ozone and desiccation tolerance in chlorolichens are intimately connected: a case study based on two species with different ecology. Environmental Science and Pollution Research, 2018, 25, 8089-8103.	5.3	10
57	Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta, 2018, 247, 705-714.	3.2	10
58	Element accumulation performance of living and dead lichens in a large-scale transplant application. Environmental Science and Pollution Research, 2021, 28, 16214-16226.	5.3	10
59	Congruence Evaluation of Mercury Pollution Patterns Around a Waste Incinerator over a 16-Year-Long Period Using Different Biomonitors. Atmosphere, 2019, 10, 183.	2.3	9
60	Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods. Environmental Monitoring and Assessment, 2019, 191, 260.	2.7	8
61	Phytohormone release by three isolated lichen mycobionts and the effects of indole-3-acetic acid on their compatible photobionts. Symbiosis, 2020, 82, 95-108.	2.3	7
62	Enhanced culturing techniques for the mycobiont isolated from the lichen Xanthoria parietina. Mycological Progress, 2021, 20, 797-808.	1.4	7
63	The Interaction of Graphene Oxide with the Pollenâ^'Stigma System: In Vivo Effects on the Sexual Reproduction of Cucurbita pepo L Applied Sciences (Switzerland), 2021, 11, 6150.	2.5	6
64	Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L Nanomaterials, 2020, 10, 1877.	4.1	5
65	Is airborne graphene oxide a possible hazard for the sexual reproduction of wind-pollinated plants?. Science of the Total Environment, 2022, 830, 154625.	8.0	5
66	Beyond ozone-tolerance: Effects of ozone fumigation on trace element and PAH enriched thalli of the lichen biomonitor Pseudevernia furfuracea. Atmospheric Environment, 2019, 210, 132-142.	4.1	3
67	Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. Environmental Pollution, 2021, 273, 116500.	7.5	3
68	New insight on element bioaccumulation performance of two lichen biomonitors: When morpho-chemical details mark the difference. Science of the Total Environment, 2021, 782, 146360.	8.0	2
69	The lichens of the Majella National Park (Central Italy): an annotated checklist. MycoKeys, 2021, 78, 119-168.	1.9	1
70	Validation of particulate dispersion models by native lichens as point receptors: a case study from NE Italy. Environmental Science and Pollution Research, 2020, 27, 13384-13395.	5.3	1