Jacquelyn S Fetrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to Glutaredoxins/Thioredoxins and T 1 Ribonucleases 1 1Edited by F. Cohen. Journal of Molecular Biology, 1998, 281, 949-968.	4.2	207
2	Analysis of the peroxiredoxin family: Using activeâ€site structure and sequence information for global classification and residue analysis. Proteins: Structure, Function and Bioinformatics, 2011, 79, 947-964.	2.6	159
3	A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3329-3346.	6.6	147
4	Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the Glutaredoxin/Thioredoxin disulfide oxidoreductase activity 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1998, 282, 703-711.	4.2	97
5	PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Research, 2011, 39, D332-D337.	14.5	94
6	Structureâ€based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphataseâ€1 subfamily. FASEB Journal, 1999, 13, 1866-1874.	0.5	81
7	Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight?. Protein Science, 2001, 10, 1005-1014.	7.6	68
8	Mutating a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropanation. ChemBioChem, 2016, 17, 394-397.	2.6	64
9	Structure-based Active Site Profiles for Genome Analysis and Functional Family Subclassification. Journal of Molecular Biology, 2003, 334, 387-401.	4.2	56
10	Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis. Gene, 2014, 542, 38-45.	2.2	47
11	Synergistic Computational and Experimental Proteomics Approaches for More Accurate Detection of Active Serine Hydrolases in Yeast. Molecular and Cellular Proteomics, 2004, 3, 209-225.	3.8	46
12	Conformational and Oligomeric Effects on the Cysteine pKaof Tryparedoxin Peroxidase. Journal of Biomolecular Structure and Dynamics, 2010, 28, 51-70.	3.5	46
13	Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene. Plant Physiology, 2018, 176, 2095-2118.	4.8	41
14	Chemical and Structural Diversity in Cyclooxygenase Protein Active Sites. Chemistry and Biodiversity, 2005, 2, 1533-1552.	2.1	19
15	An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins. PLoS Computational Biology, 2017, 13, e1005284.	3.2	19
16	Structural and Electrostatic Asymmetry at the Active Site in Typical and Atypical Peroxiredoxin Dimers. Journal of Physical Chemistry B, 2012, 116, 6832-6843.	2.6	16
17	Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Protein Science, 2015, 24, 1423-1439.	7.6	14
18	An approach to functionally relevant clustering of the protein universe: Active site profileâ€based	7.6	13

JACQUELYN S FETROW

#	Article	IF	CITATIONS
19	Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates. BMC Immunology, 2010, 11, 41.	2.2	11
20	New computational approaches to understanding molecular protein function. PLoS Computational Biology, 2018, 14, e1005756.	3.2	11
21	SC2ATmd: a tool for integration of the figure of merit with cluster analysis for gene expression data. Bioinformatics, 2011, 27, 1330-1331.	4.1	10
22	Active Site Profiling to Identify Protein Functional Sites in Sequences and Structures Using the Deacon Active Site Profiler (DASP). , 2006, Chapter 8, Unit 8.10.		8
23	DASP3: identification of protein sequences belonging to functionally relevant groups. BMC Bioinformatics, 2016, 17, 458.	2.6	6
24	Metropolis-Hastings Algorithm and Continuous Regression for finding Next-State Models of Protein Modification using Information Scores. , 2007, , .		5
25	Isofunctional Clustering and Conformational Analysis of the Arsenate Reductase Superfamily Reveals Nine Distinct Clusters. Biochemistry, 2020, 59, 4262-4284.	2.5	4
26	Impact of the Type I Interferon Receptor on the Global Gene Expression Program During the Course of Dendritic Cell Maturation Induced by Polyinosinic Polycytidylic Acid. Journal of Interferon and Cytokine Research, 2016, 36, 382-400.	1.2	3
27	USING INFORMATION THEORY TO DISCOVER SIDE CHAIN ROTAMER CLASSES: ANALYSIS OF THE EFFECTS OF LOCAL BACKBONE STRUCTURE. , 1998, , 278-89.		3
28	Comparison of Co-temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets. , 2010, 2010, 79-85.		2