Jeremy Lichstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	SPATIAL AUTOCORRELATION AND AUTOREGRESSIVE MODELS IN ECOLOGY. Ecological Monographs, 2002, 72, 445-463.	5.4	688
3	Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 2015, 208, 674-683.	7.3	641
4	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	12.6	576
5	Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 2007, 188, 117-131.	1.6	559
6	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	9.5	478
7	Global Leaf Trait Relationships: Mass, Area, and the Leaf Economics Spectrum. Science, 2013, 340, 741-744.	12.6	361
8	Predicting and understanding forest dynamics using a simple tractable model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17018-17022.	7.1	211
9	Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species. PLoS ONE, 2007, 2, e870.	2.5	142
10	Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences, 2015, 12, 2655-2694.	3.3	108
11	Demographic trade-offs predict tropical forest dynamics. Science, 2020, 368, 165-168.	12.6	100
12	Shifts in tree functional composition amplify the response of forest biomass to climate. Nature, 2018, 556, 99-102.	27.8	99
13	Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Global Change Biology, 2014, 20, 2915-2926.	9.5	96
14	Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5480-5485.	7.1	94
15	Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 2005, 14, 97-98.	5.8	93
16	Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142095.	2.6	93
17	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818.	2.1	82
18	Recruitment limitation in secondary forests dominated by an exotic tree. Journal of Vegetation Science, 2004, 15, 721-728.	2.2	74

JEREMY LICHSTEIN

#	Article	IF	CITATIONS
19	Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 2015, 207, 1026-1037.	7.3	74
20	Quantifying Leaf Phenology of Individual Trees and Species in a Tropical Forest Using Unmanned Aerial Vehicle (UAV) Images. Remote Sensing, 2019, 11, 1534.	4.0	74
21	Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecology Letters, 2009, 12, 1385-1393.	6.4	73
22	Nitrogen fixation strategies can explain the latitudinal shift in nitrogenâ€fixing tree abundance. Ecology, 2014, 95, 2236-2245.	3.2	70
23	Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Global Biogeochemical Cycles, 2016, 30, 1827-1846.	4.9	61
24	WHITE SPRUCE MEETS BLACK SPRUCE: DISPERSAL, POSTFIRE ESTABLISHMENT, AND GROWTH IN A WARMING CLIMATE. Ecological Monographs, 2008, 78, 489-505.	5.4	47
25	The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology, 2014, 95, 952-962.	3.2	44
26	Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest. Ecological Applications, 2013, 23, 1962-1975.	3.8	41
27	Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests. PLoS ONE, 2010, 5, e12056.	2.5	40
28	Landscapeâ€scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecological Applications, 2016, 26, 2225-2237.	3.8	38
29	When does seed limitation matter for scaling up reforestation from patches to landscapes?. Ecological Applications, 2016, 26, 2439-2450.	3.8	38
30	Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors. , 2010, 20, 684-699.		37
31	The Imprint of Species Turnover on Old-Growth Forest Carbon Balances - Insights From a Trait-Based Model of Forest Dynamics. Ecological Studies, 2009, , 81-113.	1.2	36
32	Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. Journal of Vegetation Science, 2010, 21, 551-560.	2.2	36
33	Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes. Global Change Biology, 2016, 22, 2178-2197.	9.5	33
34	Urbanized landscapes favored by fig-eating birds increase invasive but not native juvenile strangler fig abundance. Ecology, 2012, 93, 1571-1580.	3.2	31
35	Global climate change will increase the abundance of symbiotic nitrogenâ€fixing trees in much of North America. Global Change Biology, 2017, 23, 4777-4787.	9.5	30
36	Structural changes at cut ends of earthworm giant axons in the interval between dye barrier formation and neuritic outgrowth. , 2000, 416, 143-157.		19

JEREMY LICHSTEIN

#	Article	IF	CITATIONS
37	A modelâ€based metaâ€analysis for estimating speciesâ€specific wood density and identifying potential sources of variation. Journal of Ecology, 2014, 102, 194-208.	4.0	19
38	Confronting terrestrial biosphere models with forest inventory data. , 2014, 24, 699-715.		18
39	Nitrogenâ€fixing tree abundance in higherâ€latitude North America is not constrained by diversity. Ecology Letters, 2017, 20, 842-851.	6.4	18
40	Surface water, vegetation, and fire as drivers of the terrestrial Arctic-boreal albedo feedback. Environmental Research Letters, 2021, 16, 084046.	5.2	15
41	Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species. PLoS ONE, 2014, 9, e91798.	2.5	15
42	Demographic controls of aboveground forest biomass across North America. Ecology Letters, 2016, 19, 414-423.	6.4	13
43	Local diversity in heterogeneous landscapes: quantitative assessment with a height-structured forest metacommunity model. Theoretical Ecology, 2011, 4, 269-281.	1.0	12
44	Spatial and temporal heterogeneity in the dynamics of eastern U.S. forests: Implications for developing broad-scale forest dynamics models. Ecological Modelling, 2014, 279, 89-99.	2.5	10
45	Forest biomass stocks and dynamics across the subtropical Andes. Biotropica, 2021, 53, 170-178.	1.6	9
46	Opportunities for forest sector emissions reductions: a stateâ€level analysis. Ecological Applications, 2021, 31, e02327.	3.8	8
47	The functionâ€dominance correlation drives the direction and strength of biodiversity–ecosystem functioning relationships. Ecology Letters, 2021, 24, 1762-1775.	6.4	8
48	Multidimensional trait space informed by a mechanistic model of tree growth and carbon allocation. Ecosphere, 2018, 9, e02060.	2.2	4
49	An index for measuring functional extension and evenness in trait space. Ecology and Evolution, 2021, 11, 7461-7473.	1.9	4
50	Leaf Economics of Early- and Late-Successional Plants. American Naturalist, 2021, 198, 347-359.	2.1	4
51	Estimation of pollen productivity and dispersal: How pollen assemblages in small lakes represent vegetation. Ecological Monographs, 2022, 92, .	5.4	3
52	Predicting broad-scale carbon loss and recovery in managed tropical forests. Carbon Management, 2013, 4, 575-577.	2.4	1