
Daniel W Kulp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647016/publications.pdf Version: 2024-02-01

DANIEL W KILLD

#	Article	IF	CITATIONS
1	Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318.	6.4	17
2	Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nature Communications, 2022, 13, 695.	12.8	2
3	Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacology and Translational Science, 2021, 4, 1349-1361.	4.9	3
4	Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. Cell Reports Medicine, 2021, 2, 100420.	6.5	28
5	Incorporation of a Novel CD4+ Helper Epitope Identified from Aquifex aeolicus Enhances Humoral Responses Induced by DNA and Protein Vaccinations. IScience, 2020, 23, 101399.	4.1	11
6	SARS-CoV-2 Assays To Detect Functional Antibody Responses That Block ACE2 Recognition in Vaccinated Animals and Infected Patients. Journal of Clinical Microbiology, 2020, 58, .	3.9	57
7	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	2.5	29
8	A DNA-Launched Nanoparticle Vaccine Elicits CD8+ T-cell Immunity to Promote <i>In Vivo</i> Tumor Control. Cancer Immunology Research, 2020, 8, 1354-1364.	3.4	20
9	Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020, 11, 2601.	12.8	514
10	In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. Advanced Science, 2020, 7, 1902802.	11.2	30
11	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
12	Nanoparticle Vaccines: In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity (Adv.) Tj ETQo	o û @rgB	T /Øverlock 1
13	In vivo delivery of synthetic DNA–encoded antibodies induces broad HIV-1–neutralizing activity. Journal of Clinical Investigation, 2020, 130, 827-837.	8.2	30
14	Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16473-16478.	7.1	141
15	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
16	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
17	Protein engineering and particulate display of B-cell epitopes to facilitate development of novel vaccines. Current Opinion in Immunology, 2019, 59, 49-56.	5.5	24
18	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153

DANIEL W KULP

#	Article	IF	CITATIONS
19	Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science, 2019, 363, 649-654.	12.6	227
20	Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity, 2018, 48, 133-146.e6.	14.3	274
21	Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Scientific Reports, 2018, 8, 16527.	3.3	69
22	The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Science Translational Medicine, 2018, 10, .	12.4	113
23	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
24	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	12.8	176
25	Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology, 2017, 505, 193-209.	2.4	36
26	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
27	Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science, 2016, 353, 1557-1560.	12.6	147
28	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
29	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	28.9	270
30	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
31	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
32	HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science, 2016, 351, 1458-1463.	12.6	382
33	The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions. Structure, 2015, 23, 527-541.	3.3	64
34	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	4.7	141
35	Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science, 2015, 349, 156-161.	12.6	358
36	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	12.8	113

DANIEL W KULP

#	Article	IF	CITATIONS
37	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	28.9	239
38	Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Science Translational Medicine, 2014, 6, 236ra63.	12.4	160
39	Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology, 2014, 454-455, 139-144.	2.4	31
40	Advances in structure-based vaccine design. Current Opinion in Virology, 2013, 3, 322-331.	5.4	87
41	Structural informatics, modeling, and design with an openâ€source Molecular Software Library (MSL). Journal of Computational Chemistry, 2012, 33, 1645-1661.	3.3	23