Daniel W Kulp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2647016/publications.pdf Version: 2024-02-01

DANIEL W KILLD

#	Article	IF	CITATIONS
1	Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020, 11, 2601.	12.8	514
2	HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science, 2016, 351, 1458-1463.	12.6	382
3	Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science, 2015, 349, 156-161.	12.6	358
4	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
5	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
6	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
7	Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity, 2018, 48, 133-146.e6.	14.3	274
8	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	28.9	270
9	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	28.9	239
10	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
11	Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science, 2019, 363, 649-654.	12.6	227
12	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
13	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	12.8	176
14	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
15	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
16	Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Science Translational Medicine, 2014, 6, 236ra63.	12.4	160
17	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
18	Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science, 2016, 353, 1557-1560.	12.6	147

DANIEL W KULP

#	Article	IF	CITATIONS
19	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
20	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	4.7	141
21	Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16473-16478.	7.1	141
22	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	12.8	113
23	The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Science Translational Medicine, 2018, 10, .	12.4	113
24	Advances in structure-based vaccine design. Current Opinion in Virology, 2013, 3, 322-331.	5.4	87
25	Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Scientific Reports, 2018, 8, 16527.	3.3	69
26	The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions. Structure, 2015, 23, 527-541.	3.3	64
27	SARS-CoV-2 Assays To Detect Functional Antibody Responses That Block ACE2 Recognition in Vaccinated Animals and Infected Patients. Journal of Clinical Microbiology, 2020, 58, .	3.9	57
28	Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology, 2017, 505, 193-209.	2.4	36
29	Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology, 2014, 454-455, 139-144.	2.4	31
30	In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. Advanced Science, 2020, 7, 1902802.	11.2	30
31	In vivo delivery of synthetic DNA–encoded antibodies induces broad HIV-1–neutralizing activity. Journal of Clinical Investigation, 2020, 130, 827-837.	8.2	30
32	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	2.5	29
33	Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. Cell Reports Medicine, 2021, 2, 100420.	6.5	28
34	Protein engineering and particulate display of B-cell epitopes to facilitate development of novel vaccines. Current Opinion in Immunology, 2019, 59, 49-56.	5.5	24
35	Structural informatics, modeling, and design with an openâ€source Molecular Software Library (MSL). Journal of Computational Chemistry, 2012, 33, 1645-1661.	3.3	23
36	A DNA-Launched Nanoparticle Vaccine Elicits CD8+ T-cell Immunity to Promote <i>In Vivo</i> Tumor Control. Cancer Immunology Research, 2020, 8, 1354-1364.	3.4	20

DANIEL W KULP

#	Article	IF	CITATIONS
37	Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318.	6.4	17
38	Incorporation of a Novel CD4+ Helper Epitope Identified from Aquifex aeolicus Enhances Humoral Responses Induced by DNA and Protein Vaccinations. IScience, 2020, 23, 101399.	4.1	11
39	Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacology and Translational Science, 2021, 4, 1349-1361.	4.9	3
40	Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nature Communications, 2022, 13, 695.	12.8	2
41	Nanoparticle Vaccines: In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity (Adv.) Tj ETQo	111 0. 784 מונ	∙314 rgBT /○