Boris Hinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2646581/publications.pdf

Version: 2024-02-01

		12330	10734
149	25,978	69	138
papers	citations	h-index	g-index
183	183	183	25641
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 2002, 3, 349-363.	37.0	3,539
2	The Myofibroblast. American Journal of Pathology, 2007, 170, 1807-1816.	3.8	1,782
3	Formation and Function of the Myofibroblast during Tissue Repair. Journal of Investigative Dermatology, 2007, 127, 526-537.	0.7	1,277
4	Myofibroblast contraction activates latent TGF- \hat{l}^21 from the extracellular matrix. Journal of Cell Biology, 2007, 179, 1311-1323.	5.2	1,118
5	Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Molecular Biology of the Cell, 2001, 12, 2730-2741.	2.1	1,076
6	Recent Developments in Myofibroblast Biology. American Journal of Pathology, 2012, 180, 1340-1355.	3.8	1,043
7	Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunology, 2007, 8, 1255-1265.	14.5	809
8	Focal adhesion size controls tension-dependent recruitment of \hat{l}_{\pm} -smooth muscle actin to stress fibers. Journal of Cell Biology, 2006, 172, 259-268.	5.2	625
9	The myofibroblast matrix: implications for tissue repair andÂfibrosis. Journal of Pathology, 2013, 229, 298-309.	4.5	560
10	The myofibroblast: Paradigm for a mechanically active cell. Journal of Biomechanics, 2010, 43, 146-155.	2.1	544
11	Mechanical Tension Controls Granulation Tissue Contractile Activity and Myofibroblast Differentiation. American Journal of Pathology, 2001, 159, 1009-1020.	3.8	542
12	Integrins and the activation of latent transforming growth factor \hat{l}^21 \hat{a} \in " An intimate relationship. European Journal of Cell Biology, 2008, 87, 601-615.	3.6	465
13	The extracellular matrix and transforming growth factor- \hat{l}^21 : Tale of a strained relationship. Matrix Biology, 2015, 47, 54-65.	3.6	453
14	Mechanisms of force generation and transmission by myofibroblasts. Current Opinion in Biotechnology, 2003, 14, 538-546.	6.6	354
15	Marching at the front and dragging behind. Journal of Cell Biology, 2001, 155, 1319-1332.	5.2	332
16	Myofibroblasts. Experimental Eye Research, 2016, 142, 56-70.	2.6	323
17	Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 2005, 118, 4731-4739.	2.0	322
18	Tissue stiffness, latent TGF- \hat{l}^21 Activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis. Current Rheumatology Reports, 2009, 11, 120-126.	4.7	321

#	Article	IF	CITATIONS
19	Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nature Reviews Rheumatology, 2020, 16, 11-31.	8.0	320
20	YAP/TAZ Are Mechanoregulators of TGF-Î ² -Smad Signaling and Renal Fibrogenesis. Journal of the American Society of Nephrology: JASN, 2016, 27, 3117-3128.	6.1	316
21	The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biology, 2018, 68-69, 81-93.	3 . 6	281
22	The mechanical memory of lung myofibroblasts. Integrative Biology (United Kingdom), 2012, 4, 410.	1.3	273
23	TGF- \hat{l}^21 \hat{a} \in " A truly transforming growth factor in fibrosis and immunity. Seminars in Cell and Developmental Biology, 2020, 101, 123-139.	5.0	264
24	\hat{l}_{\pm} -Smooth Muscle Actin Is Crucial for Focal Adhesion Maturation in Myofibroblasts. Molecular Biology of the Cell, 2003, 14, 2508-2519.	2.1	262
25	A Key Role for NOX4 in Epithelial Cell Death During Development of Lung Fibrosis. Antioxidants and Redox Signaling, 2011, 15, 607-619.	5.4	249
26	Masters and servants of the force: The role of matrix adhesions in myofibroblast force perception and transmission. European Journal of Cell Biology, 2006, 85, 175-181.	3.6	243
27	MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nature Materials, 2017, 16, 379-389.	27. 5	234
28	Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thrombosis and Haemostasis, 2003, 90, 993-1002.	3.4	220
29	The NH2-terminal peptide of α–smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. Journal of Cell Biology, 2002, 157, 657-663.	5.2	215
30	The Single-Molecule Mechanics of the Latent TGF-Î ² 1 Complex. Current Biology, 2011, 21, 2046-2054.	3.9	214
31	Actin-dependent Lamellipodia Formation and Microtubule-dependent Tail Retraction Control-directed Cell Migration. Molecular Biology of the Cell, 2000, 11, 2999-3012.	2.1	212
32	The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research, 2016, 5, 752.	1.6	209
33	The Nano-Scale Mechanical Properties of the Extracellular Matrix Regulate Dermal Fibroblast Function. Journal of Investigative Dermatology, 2014, 134, 1862-1872.	0.7	207
34	The role of myofibroblasts in wound healing. Current Research in Translational Medicine, 2016, 64, 171-177.	1.8	207
35	The role of the myofibroblast in tumor stroma remodeling. Cell Adhesion and Migration, 2012, 6, 203-219.	2.7	202
36	Myofibroblast Development Is Characterized by Specific Cell-Cell Adherens Junctions. Molecular Biology of the Cell, 2004, 15, 4310-4320.	2.1	198

#	Article	IF	CITATIONS
37	Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 2016, 93, 133-142.	1.9	192
38	Prestress in the extracellular matrix sensitizes latent TGF- \hat{l}^21 for activation. Journal of Cell Biology, 2014, 207, 283-297.	5.2	184
39	Integrins $\hat{l}\pm v\hat{l}^25$ and $\hat{l}\pm v\hat{l}^23$ promote latent TGF- \hat{l}^21 activation by human cardiac fibroblast contraction. Cardiovascular Research, 2014, 102, 407-417.	3.8	184
40	Mechanical Aspects of Lung Fibrosis. Proceedings of the American Thoracic Society, 2012, 9, 137-147.	3.5	169
41	Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nature Communications, 2019, 10, 1850.	12.8	167
42	The myofibroblast at a glance. Journal of Cell Science, 2020, 133, .	2.0	167
43	Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell, 2016, 164, 128-140.	28.9	163
44	Expression of \hat{l}_{\pm} -Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells. Stem Cell Reports, 2015, 4, 1016-1030.	4.8	162
45	Tumor Cell Invasion Is Promoted by Interstitial Flow-Induced Matrix Priming by Stromal Fibroblasts. Cancer Research, 2011, 71, 790-800.	0.9	151
46	Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biology, 2018, 71-72, 205-224.	3.6	147
47	Wound-healing defect of CD18 \hat{a} '/ \hat{a} ' mice due to a decrease in TGF- \hat{l}^21 and myofibroblast differentiation. EMBO Journal, 2005, 24, 3400-3410.	7.8	142
48	Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biology Reports, 2010, 2, 78.	4.0	134
49	Quantifying Lamella Dynamics of Cultured Cells by SACED, a New Computer-Assisted Motion Analysis. Experimental Cell Research, 1999, 251, 234-243.	2.6	119
50	Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Experimental Cell Research, 2019, 379, 119-128.	2.6	118
51	Biocompatibility of Bioresorbable Poly(L-lactic acid) Composite Scaffolds Obtained by Supercritical Gas Foaming with Human Fetal Bone Cells. Tissue Engineering, 2005, 11, 1640-1649.	4.6	114
52	The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials, 2009, 30, 1781-1789.	11.4	114
53	Cadherin-11â \in "mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF- \hat{l}^2 . Science Signaling, 2019, 12, .	3.6	113
54	î²-Catenin–regulated myeloid cell adhesion and migration determine wound healing. Journal of Clinical Investigation, 2014, 124, 2599-2610.	8.2	108

#	Article	IF	CITATIONS
55	The ED-A domain enhances the capacity of fibronectin to store latent TGF- \hat{l}^2 binding protein-1 in the fibroblast matrix. Journal of Cell Science, 2018, 131, .	2.0	107
56	YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts. American Journal of Pathology, 2015, 185, 3326-3337.	3.8	106
57	Regulation of myofibroblast activities: Calcium pulls some strings behind the scene. Experimental Cell Research, 2010, 316, 2390-2401.	2.6	105
58	A new lock-step mechanism of matrix remodelling based on subcellular contractile events. Journal of Cell Science, 2010, 123, 1751-1760.	2.0	105
59	Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nature Communications, 2018, 9, 2066.	12.8	102
60	Myofibroblast communication is controlled by intercellular mechanical coupling. Journal of Cell Science, 2008, 121, 3305-3316.	2.0	100
61	Cells Lacking \hat{l}^2 -Actin are Genetically Reprogrammed and Maintain Conditional Migratory Capacity*. Molecular and Cellular Proteomics, 2012, 11, 255-271.	3.8	93
62	Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell and Tissue Research, 2016, 364, 415-427.	2.9	87
63	Contraction of myofibroblasts in granulation tissue is dependent on Rho/Rho kinase/myosin light chain phosphatase activity. Wound Repair and Regeneration, 2006, 14, 313-320.	3.0	86
64	Dissecting the roles of endothelin, TGF- \hat{l}^2 and GM-CSF on myofibroblast differentiation by keratinocytes. Thrombosis and Haemostasis, 2004, 92, 262-274.	3.4	84
65	Nonactivated versus Thrombin-Activated Platelets on Wound Healing and Fibroblast-to-Myofibroblast Differentiation In Vivo and In Vitro. Plastic and Reconstructive Surgery, 2012, 129, 46e-54e.	1.4	84
66	Isoform-Specific Regulation of the Actin-Organizing Protein Palladin during TGF- \hat{l}^2 1-Induced Myofibroblast Differentiation. Journal of Investigative Dermatology, 2006, 126, 2387-2396.	0.7	83
67	Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction. Cell Reports, 2017, 18, 1774-1790.	6.4	83
68	The inflammatory speech of fibroblasts. Immunological Reviews, 2021, 302, 126-146.	6.0	79
69	Pulmonary vein stenosis and the pathophysiology of "upstream―pulmonary veins. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 245-253.	0.8	77
70	Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Frontiers in Physiology, 2019, 10, 336.	2.8	77
71	Hypoxia Impairs Skin Myofibroblast Differentiation and Function. Journal of Investigative Dermatology, 2010, 130, 2818-2827.	0.7	74
72	Multipotent stromal cells: One name, multiple identities. Cell Stem Cell, 2021, 28, 1690-1707.	11.1	73

#	Article	IF	CITATIONS
73	Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. Journal of Cell Science, 2008, 121, 877-886.	2.0	69
74	Matrix mechanics and regulation of the fibroblast phenotype. Periodontology 2000, 2013, 63, 14-28.	13.4	67
75	Suppression of the fibrotic encapsulation of silicone implants by inhibiting the mechanical activation of pro-fibrotic TGF-Î ² . Nature Biomedical Engineering, 2021, 5, 1437-1456.	22.5	67
76	The Mechanical Environment Modulates Intracellular Calcium Oscillation Activities of Myofibroblasts. PLoS ONE, 2013, 8, e64560.	2.5	64
77	A Novel Method of Dynamic Culture Surface Expansion Improves Mesenchymal Stem Cell Proliferation and Phenotype. Stem Cells, 2009, 27, 200-209.	3.2	62
78	NOX4 Expression in Human Microglia Leads to Constitutive Generation of Reactive Oxygen Species and to Constitutive IL-6 Expression. Journal of Innate Immunity, 2009, 1, 570-581.	3.8	60
79	Myofibroblasts work best under stress. Journal of Bodywork and Movement Therapies, 2009, 13, 121-127.	1.2	60
80	Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS ONE, 2017, 12, e0187348.	2.5	60
81	Preclinical Models of Wound Healing: Is Man the Model? Proceedings of the Wound Healing Society Symposium. Advances in Wound Care, 2013, 2, 1-4.	5.1	59
82	It has to be the αv: myofibroblast integrins activate latent TGF-β1. Nature Medicine, 2013, 19, 1567-1568.	30.7	57
83	The circadian clock protein REVERBÎ \pm inhibits pulmonary fibrosis development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1139-1147.	7.1	57
84	Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells, 2021, 10, 1794.	4.1	53
85	The N-terminal Ac-EEED sequence plays a role in \hat{l}_{\pm} -smooth-muscle actin incorporation into stress fibers. Journal of Cell Science, 2005, 118, 1395-1404.	2.0	51
86	The effect of lactose-conjugated silk biomaterials on the development of fibrogenic fibroblasts. Biomaterials, 2008, 29, 4665-4675.	11.4	51
87	Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circulation Research, 2016, 119, 1040-1045.	4.5	50
88	Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. Journal of Cell Science, 2016, 129, 774-87.	2.0	50
89	Mechanical Induction of Gene Expression in Connective Tissue Cells. Methods in Cell Biology, 2010, 98, 178-205.	1.1	46
90	Differential topical susceptibility to $TGF\hat{l}^2$ in intact and injured regions of the epithelium: key role in myofibroblast transition. Molecular Biology of the Cell, 2013, 24, 3326-3336.	2.1	45

#	Article	IF	CITATIONS
91	Transgenic Mice Reveal Novel Activities of Growth Hormone in Wound Repair, Angiogenesis, and Myofibroblast Differentiation. Journal of Biological Chemistry, 2004, 279, 26674-26684.	3.4	41
92	Culture of Primary Bovine Chondrocytes on a Continuously Expanding Surface Inhibits Dedifferentiation. Tissue Engineering - Part A, 2012, 18, 2466-2476.	3.1	41
93	Triplet Imaging of Oxygen Consumption during the Contraction of a Single Smooth Muscle Cell (A7r5). Biophysical Journal, 2010, 98, 339-349.	0.5	37
94	Lkb1 is required for TGF \hat{I}^2 -mediated myofibroblast differentiation. Journal of Cell Science, 2008, 121, 3531-3540.	2.0	36
95	Novel micropatterns mechanically control fibrotic reactions at the surface of silicone implants. Biomaterials, 2015, 54, 136-147.	11.4	35
96	Plasma fibronectin stabilizes <i>Borrelia burgdorferi</i> –endothelial interactions under vascular shear stress by a catch-bond mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3490-E3498.	7.1	35
97	Connecting (T)issues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer Research, 2016, 76, 6159-6162.	0.9	34
98	Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin $\hat{i}^{5}\hat{i}^{2}1$ Is a Modulator of Extravillous Trophoblast Functions. Cells, 2019, 8, 1369.	4.1	30
99	Does Breathing Amplify Fibrosis?. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 9-11.	5.6	29
100	Activin A in Inflammation, Tissue Repair, and Fibrosis: Possible Role as Inflammatory and Fibrotic Mediator of Uterine Fibroid Development and Growth. Seminars in Reproductive Medicine, 2017, 35, 499-509.	1.1	27
101	Activation of latent transforming growth factor- \hat{l}^2l , a conserved function for pregnancy-specific beta 1-glycoproteins. Molecular Human Reproduction, 2018, 24, 602-612.	2.8	25
102	Dynamic Expansion Culture for Mesenchymal Stem Cells. Methods in Molecular Biology, 2011, 698, 175-188.	0.9	24
103	Strategies to overcome the hurdles to treat fibrosis, a major unmet clinical need. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7291-7293.	7.1	23
104	Combinatorial extracellular matrix microarray identifies novel bioengineered substrates for xeno-free culture of human pluripotent stem cells. Biomaterials, 2020, 248, 120017.	11.4	23
105	Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK). Biochemistry and Cell Biology, 1995, 73, 441-459.	2.0	22
106	Experimental Right Ventricular Hypertension Induces Regional $\hat{l}^21\hat{a}\in \mathbb{N}$ integrina \mathbb{N} in Mediated Transduction of Hypertrophic and Profibrotic Right and Left Ventricular Signaling. Journal of the American Heart Association, 2018, 7, .	3.7	22
107	Novel differences in gene expression and functional capabilities of myofibroblast populations in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L697-L710.	2.9	22
108	Immunofluorescence Detection of the Cytoskeleton and Extracellular Matrix in Tissue and Cultured Cells. Methods in Molecular Biology, 2010, 611, 43-57.	0.9	21

#	Article	IF	CITATIONS
109	A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting. Biomaterials, 2020, 229, 119577.	11.4	21
110	Myofibroblast Markers and Microscopy Detection Methods in Cell Culture and Histology. Methods in Molecular Biology, 2021, 2299, 17-47.	0.9	21
111	Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge. American Journal of Translational Research (discontinued), 2017, 9, 2723-2735.	0.0	21
112	Filamin A Mediates Wound Closure by Promoting Elastic Deformation and Maintenance of Tension in the Collagen Matrix. Journal of Investigative Dermatology, 2015, 135, 2852-2861.	0.7	19
113	Hyperglycemia Interacts with Ischemia in a Synergistic Way on Wound Repair and Myofibroblast Differentiation. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e471.	0.6	17
114	A story of fibers and stress: <scp>Matrixâ€embedded</scp> signals for fibroblast activation in the skin. Wound Repair and Regeneration, 2021, 29, 515-530.	3.0	17
115	Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart. Journal of Proteome Research, 2021, 20, 2867-2881.	3.7	16
116	Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice. PLoS ONE, 2015, 10, e0121049.	2.5	16
117	CCN1 expression by fibroblasts is required for bleomycin-induced skin fibrosis. Matrix Biology Plus, 2019, 3, 100009.	3.5	15
118	Cellular, structural and functional cardiac remodelling following pressure overload and unloading. International Journal of Cardiology, 2016, 216, 32-42.	1.7	13
119	New injectable self-assembled hydrogels that promote angiogenesis through a bioactive degradation product. Acta Biomaterialia, 2020, 115, 197-209.	8.3	13
120	Proâ€inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Angâ€(1â€7). EMBO Molecular Medicine, 2021, 13, e14392.	6.9	13
121	Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. Small, 2020, 16, 1903788.	10.0	12
122	Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts. Cells, 2020, 9, 2702.	4.1	12
123	Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods in Molecular Biology, 2021, 2299, 277-290.	0.9	11
124	Physics and Physiology of Cell Spreading in Two and Three Dimensions. Physiology, 2021, 36, 382-391.	3.1	11
125	The myofibroblast in connective tissue repair and regeneration. , 2010, , 39-80.		10
126	Signs of stress on soft surfaces. Journal of Cell Communication and Signaling, 2015, 9, 305-307.	3.4	9

#	Article	IF	CITATIONS
127	miR-127-3p Is an Epigenetic Activator of Myofibroblast Senescence Situated within the MicroRNA-Enriched Dlk1-Dio3â€'Imprinted Domain on Mouse Chromosome 12. Journal of Investigative Dermatology, 2021, 141, 1076-1086.e3.	0.7	9
128	Induction of p38, tumour necrosis factor \hat{l}_{\pm} and RANTES by mechanical stretching of keratinocytes expressing mutant keratin 10R156H. British Journal of Dermatology, 2011, 164, 125-134.	1.5	8
129	A Rodent Model of Hypertrophic Scarring: Splinting of Rat Wounds. Methods in Molecular Biology, 2021, 2299, 405-417.	0.9	8
130	Heterogeneity of Smooth Muscle. , 2012, , 1183-1195.		6
131	CXCR3A promotes the secretion of the antifibrotic decoy receptor sIL-13Rα2 by pulmonary fibroblasts. American Journal of Physiology - Cell Physiology, 2020, 319, C1059-C1069.	4.6	6
132	Controlled release of low-molecular weight, polymer-free corticosteroid coatings suppresses fibrotic encapsulation of implanted medical devices. Biomaterials, 2022, 286, 121586.	11.4	6
133	The Role of the Myofibroblast in Fibrosis and Cancer Progression. , 2011, , 37-74.		5
134	Targeting the myofibroblast to improve wound healing. , 2016, , 69-100.		5
135	Tracking adiponectin biodistribution via fluorescence molecular tomography indicates increased vascular permeability after streptozotocin-induced diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E760-E772.	3.5	5
136	The Contractile Properties and Responses to Tensional Loading of Dupuytren???s Disease???Derived Fibroblasts Are Altered: A Cause of the Contracture?. Plastic and Reconstructive Surgery, 2004, 113, 622-624.	1.4	4
137	The myofibroblast and Giulio Gabbiani: An inseparable couple celebrates their 50 years golden wedding anniversary. Wound Repair and Regeneration, 2021, 29, 511-514.	3.0	4
138	Compromised dental cells viability following teeth-whitening exposure. Scientific Reports, 2021, 11, 15547.	3.3	3
139	The Role of the Myofibroblast in Dupuytren's Disease: Fundamental Aspects of Contraction and Therapeutic Perspectives. , 2012, , 53-60.		2
140	Critical substrate stiffness initiates smooth muscle alphaâ€actin promoter activity in myofibroblasts. FASEB Journal, 2008, 22, 22-22.	0.5	2
141	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92.		1
142	Triplet Imaging of Oxygen Consumption During the Contraction of a Single Smooth Muscle Cell (A7r5). Advances in Experimental Medicine and Biology, 2012, 737, 263-268.	1.6	1
143	Contribution of Interstitial Fluid Flow to Fibroblast Alignment and Differentiation. Wound Repair and Regeneration, 2005, 13, A23-A23.	3.0	0
144	Molecular regulation of myofibroblast formation. Experimental Dermatology, 2008, 17, 884-886.	2.9	0

#	Article	IF	CITATIONS
145	5.2 Integrin function in heart fibrosis: mechanical strain, transforming growth factor-beta 1 activation, and collagen glycation., 2012,, 406-431.		0
146	The 22nd annual meeting of the European Tissue Repair Society (ETRS) in Athens, Greece. Fibrogenesis and Tissue Repair, 2013, 6, 3.	3.4	0
147	Acoustic Microflows: Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells (Small 9/2020). Small, 2020, 16, 2070045.	10.0	0
148	S77â \in The G proteins GÎ \pm q/11 and GÎ \pm 12/13 drive unique myofibroblast functions to promote pulmonary fibrosis. , 2021, , .		0
149	THE MICRO-REQUIREMENTS FOR CONNECTIVE TISSUE REMODELING: Adhesion Size Controls Myofibroblast Differentiation. Proceedings of the JSME Bioengineering Conference and Seminar, 2005, 2004.17, 251.	0.0	0