Yanchao Bi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2644673/publications.pdf

Version: 2024-02-01

		172457	206112
91	3,032	29	48
papers	citations	h-index	g-index
104	104	104	3423
104	104	104	3723
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Identifying and Mapping Connectivity Patterns of Brain Network Hubs in Alzheimer's Disease. Cerebral Cortex, 2015, 25, 3723-3742.	2.9	270
2	Predicting Conceptual Processing Capacity from Spontaneous Neuronal Activity of the Left Middle Temporal Gyrus. Journal of Neuroscience, 2012, 32, 481-489.	3.6	158
3	White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain, 2013, 136, 2952-2965.	7.6	146
4	Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain. Cerebral Cortex, 2017, 27, bhw038.	2.9	117
5	Object Domain and Modality in the Ventral Visual Pathway. Trends in Cognitive Sciences, 2016, 20, 282-290.	7.8	114
6	Intrinsic functional network architecture of human semantic processing: Modules and hubs. NeuroImage, 2016, 132, 542-555.	4.2	110
7	Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. Neurolmage, 2013, 79, 1-9.	4.2	100
8	A tale of two frequencies: Determining the speed of lexical access for Mandarin Chinese and English compounds. Language and Cognitive Processes, 2008, 23, 1191-1223.	2.2	86
9	Tool Selectivity in Left Occipitotemporal Cortex Develops without Vision. Journal of Cognitive Neuroscience, 2013, 25, 1225-1234.	2.3	77
10	Nonvisual and Visual Object Shape Representations in Occipitotemporal Cortex: Evidence from Congenitally Blind and Sighted Adults. Journal of Neuroscience, 2014, 34, 163-170.	3.6	67
11	The role of the left anterior temporal lobe in language processing revisited: Evidence from an individual with ATL resection. Cortex, 2011, 47, 575-587.	2.4	66
12	Intrinsic Brain Hub Connectivity Underlies Individual Differences in Spatial Working Memory. Cerebral Cortex, 2017, 27, 5496-5508.	2.9	66
13	Organizational Principles of Abstract Words in the Human Brain. Cerebral Cortex, 2018, 28, 4305-4318.	2.9	65
14	How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals. Journal of Neuroscience, 2015, 35, 12545-12559.	3.6	63
15	A Tri-network Model of Human Semantic Processing. Frontiers in Psychology, 2017, 8, 1538.	2.1	61
16	Two Forms of Knowledge Representations in the Human Brain. Neuron, 2020, 107, 383-393.e5.	8.1	59
17	Where color rests: Spontaneous brain activity of bilateral fusiform and lingual regions predicts object color knowledge performance. NeuroImage, 2013, 76, 252-263.	4.2	58
18	A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults. Scientific Data, 2015, 2, 150056.	5.3	51

#	Article	IF	Citations
19	Doctor, Teacher, and Stethoscope: Neural Representation of Different Types of Semantic Relations. Journal of Neuroscience, 2018, 38, 3303-3317.	3.6	51
20	The orthographic buffer in writing Chinese characters: Evidence from a dysgraphic patient. Cognitive Neuropsychology, 2007, 24, 431-450.	1.1	50
21	Altered connectivity of the dorsal and ventral visual regions in dyslexic children: a resting-state fMRI study. Frontiers in Human Neuroscience, 2015, 9, 495.	2.0	49
22	Close yet independent: Dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe. Human Brain Mapping, 2019, 40, 4759-4776.	3.6	44
23	Neural representation of visual concepts in people born blind. Nature Communications, 2018, 9, 5250.	12.8	43
24	Distinct Regions of Right Temporal Cortex Are Associated with Biological and Human–Agent Motion: Functional Magnetic Resonance Imaging and Neuropsychological Evidence. Journal of Neuroscience, 2013, 33, 15442-15453.	3.6	42
25	The interaction between semantic and the nonsemantic systems in reading: Evidence from Chinese. Neuropsychologia, 2007, 45, 2660-2673.	1.6	40
26	Reading does not depend on writing, even in Chinese. Neuropsychologia, 2009, 47, 1193-1199.	1.6	34
27	The White Matter Structural Network Underlying Human Tool Use and Tool Understanding. Journal of Neuroscience, 2015, 35, 6822-6835.	3.6	34
28	The Left Fusiform Gyrus is a Critical Region Contributing to the Core Behavioral Profile of Semantic Dementia. Frontiers in Human Neuroscience, 2016, 10, 215.	2.0	34
29	Representational similarity analysis reveals task-dependent semantic influence of the visual word form area. Scientific Reports, 2018, 8, 3047.	3.3	33
30	Dual coding of knowledge in the human brain. Trends in Cognitive Sciences, 2021, 25, 883-895.	7.8	32
31	The contribution of orthography to spoken word production: Evidence from Mandarin Chinese. Psychonomic Bulletin and Review, 2009, 16, 555-560.	2.8	31
32	Dissociative neural correlates of semantic processing of nouns and verbs in Chinese — A language with minimal inflectional morphology. NeuroImage, 2011, 58, 912-922.	4.2	31
33	The semantic anatomical network: Evidence from healthy and brainâ€damaged patient populations. Human Brain Mapping, 2015, 36, 3499-3515.	3.6	31
34	Reading Without Speech Sounds: VWFA and its Connectivity in the Congenitally Deaf. Cerebral Cortex, 2015, 25, 2416-2426.	2.9	30
35	Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf. Psychological Science, 2015, 26, 1771-1782.	3.3	29
36	Topographical functional connectivity patterns exist in the congenitally, prelingually deaf. Scientific Reports, 2016, 6, 29375.	3.3	29

#	Article	IF	CITATIONS
37	Nouns, verbs, objects, actions, and the animate/inanimate effect. Cognitive Neuropsychology, 2007, 24, 485-504.	1.1	25
38	Orthographic and phonological effects in the picture–word interference paradigm: Evidence from a logographic language. Applied Psycholinguistics, 2009, 30, 637-658.	1.1	25
39	Representing object categories by connections: Evidence from a mutivariate connectivity pattern classification approach. Human Brain Mapping, 2016, 37, 3685-3697.	3.6	25
40	The theory-of-mind network in support of action verb comprehension: Evidence from an fMRI study. Brain and Language, 2015, 141, 1-10.	1.6	24
41	Resting-State Functional Connectivity Patterns Predict Chinese Word Reading Competency. PLoS ONE, 2012, 7, e44848.	2.5	23
42	Dissociation and association of the embodied representation of tool-use verbs and hand verbs: An fMRI study. Brain and Language, 2011, 119, 167-174.	1.6	22
43	White matter pathway supporting phonological encoding in speech production: a multi-modal imaging study of brain damage patients. Brain Structure and Function, 2016, 221, 577-589.	2.3	22
44	Dissociable intrinsic functional networks support noun-object and verb-action processing. Brain and Language, 2017, 175, 29-41.	1.6	22
45	Visual dorsal stream is associated with Chinese reading skills: A resting-state fMRI study. Brain and Language, 2016, 160, 42-49.	1.6	19
46	Brain hubs in lesion models: Predicting functional network topology with lesion patterns in patients. Scientific Reports, 2017, 7, 17908.	3.3	19
47	Semantic representation in the white matter pathway. PLoS Biology, 2018, 16, e2003993.	5.6	19
48	Neural Mechanisms of Dorsal and Ventral Visual Regions during Text Reading. Frontiers in Psychology, 2016, 7, 1399.	2.1	18
49	Neural correlates of comprehension and production of nouns and verbs in Chinese. Brain and Language, 2012, 122, 126-131.	1.6	17
50	Functional subdivisions in the anterior temporal lobes: a large scale meta-analytic investigation. Neuroscience and Biobehavioral Reviews, 2020, 115, 134-145.	6.1	17
51	The Effects of the X Chromosome on Intrinsic Functional Connectivity in the Human Brain: Evidence from Turner Syndrome Patients. Cerebral Cortex, 2015, 27, bhv240.	2.9	16
52	Resting-state functional magnetic resonance imaging in patients with leukoaraiosis-associated subcortical vascular cognitive impairment: a cross-sectional study. Neurological Research, 2016, 38, 510-517.	1.3	16
53	Domain Selectivity in the Parahippocampal Gyrus Is Predicted by the Same Structural Connectivity Patterns in Blind and Sighted Individuals. Journal of Neuroscience, 2017, 37, 4705-4716.	3.6	16
54	Idiosyncratic Tower of Babel: Individual Differences in Word-Meaning Representation Increase as Word Abstractness Increases. Psychological Science, 2021, 32, 1617-1635.	3.3	14

#	Article	IF	Citations
55	Motor knowledge is one dimension for concept organization: Further evidence from a Chinese semantic dementia case. Brain and Language, 2011, 119, 110-118.	1.6	13
56	Are abstract and concrete concepts organized differently? Evidence from the blocked translation paradigm. Applied Psycholinguistics, 2013, 34, 1059-1092.	1.1	13
57	An fMRI Study of Grammatical Morpheme Processing Associated with Nouns and Verbs in Chinese. PLoS ONE, 2013, 8, e74952.	2.5	13
58	Cognitive mechanism of writing to dictation of logographic characters. Applied Psycholinguistics, 2012, 33, 517-537.	1.1	12
59	Functional Activity and Connectivity Differences of Five Resting-State Networks in Patients with Alzheimer's Disease or Mild Cognitive Impairment. Current Alzheimer Research, 2016, 13, 234-242.	1.4	12
60	The role of visual form in lexical access: Evidence from Chinese classifier production. Cognition, 2010, 116, 101-109.	2.2	11
61	Is the semantic category effect in the lateral temporal cortex due to motion property differences?. Neurolmage, 2011, 55, 1853-1864.	4.2	11
62	The role of vision in the neural representation of unique entities. Neuropsychologia, 2016, 87, 144-156.	1.6	11
63	The neuropsychological profiles and semantic-critical regions of right semantic dementia. NeuroImage: Clinical, 2018, 19, 767-774.	2.7	11
64	Object parsing in the left lateral occipitotemporal cortex: Whole shape, part shape, and graspability. Neuropsychologia, 2020, 138, 107340.	1.6	11
65	Disentangling representations of shape and action components in the tool network. Neuropsychologia, 2018, 117, 199-210.	1.6	10
66	Common and unique structural plasticity after left and right hemisphere stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3350-3364.	4.3	10
67	Oral spelling and writing in a logographic language: Insights from a Chinese dysgraphic individual. Brain and Language, 2009, 110, 23-28.	1.6	9
68	The Effects of X Chromosome Loss on Neuroanatomical and Cognitive Phenotypes During Adolescence: a Multi-modal Structural MRI and Diffusion Tensor Imaging Study. Cerebral Cortex, 2015, 25, 2842-2853.	2.9	9
69	Connectomics Reveals Faulty Wiring Patterns for Depressed Brain. Biological Psychiatry, 2014, 76, 515-516.	1.3	8
70	Different computational relations in language are captured by distinct brain systems. Cerebral Cortex, 2023, 33, 997-1013.	2.9	8
71	Adapting the Pyramids and Palm Trees Test and the Kissing and Dancing Test and developing other semantic tests for the Chinese population. Applied Psycholinguistics, 2014, 35, 1001-1019.	1.1	7
72	From words to phrases: neural basis of social event semantic composition. Brain Structure and Function, 2022, 227, 1683-1695.	2.3	7

#	Article	IF	CITATIONS
73	Reading comprehension without phonological mediation: Further evidence from a Chinese aphasic individual. Science in China Series C: Life Sciences, 2009, 52, 492-499.	1.3	6
74	Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain. Frontiers in Human Neuroscience, 2016, 10, 158.	2.0	6
75	Connectivity of the ventral visual cortex is necessary for object recognition in patients. Human Brain Mapping, 2018, 39, 2786-2799.	3.6	6
76	Topography of Visual Features in the Human Ventral Visual Pathway. Neuroscience Bulletin, 2021, 37, 1454-1468.	2.9	6
77	Double dissociations of word and number processing in auditory and written modalities: A case study. Neurocase, 2011, 17, 418-424.	0.6	5
78	Premotor Cortex Activation Elicited during Word Comprehension Relies on Access of Specific Action Concepts. Journal of Cognitive Neuroscience, 2015, 27, 2051-2062.	2.3	5
79	Areas Recruited during Action Understanding Are Not Modulated by Auditory or Sign Language Experience. Frontiers in Human Neuroscience, 2016, 10, 94.	2.0	4
80	Domain-specific functional coupling between dorsal and ventral systems during action perception. Scientific Reports, 2020, 10, 21200.	3.3	4
81	Preference for animate domain sounds in the fusiform gyrus of blind individuals is modulated by shape–action mapping. Cerebral Cortex, 2022, 32, 4913-4933.	2.9	4
82	Brain intrinsic connection patterns underlying tool processing in human adults are present in neonates and not in macaques. Neurolmage, 2022, 258, 119339.	4.2	4
83	Nominal classification is not positive evidence for language relativity: a commentary on Kemmerer (2016). Language, Cognition and Neuroscience, 2017, 32, 428-432.	1.2	3
84	The Selective Impairment of the Phonological Output Buffer: Evidence From a Chinese Patient. Behavioural Neurology, 2005, 16, 179-189.	2.1	2
85	Primary visual cortex is activated by spoken language comprehension. Journal of Vision, 2021, 21, 2256.	0.3	2
86	A comprehensive visual featural map in the human ventral temporal cortex. Journal of Vision, 2020, 20, 1029.	0.3	1
87	Social and emotion dimensional organizations in the abstract semantic space: the neuropsychological evidence. Scientific Reports, 2021, 11, 23572.	3.3	1
88	Convergence and divergence in the neural organization of object responses to pictures and words. Journal of Vision, 2015, 15, 375.	0.3	0
89	Lateral occipitotemporal cortex's selectivity to small artifacts reflects multi-modal representation of shape-grasp mapping elements. Journal of Vision, 2017, 17, 279.	0.3	0
90	The effects of different types of human-object interactions on the ventral occipitotemporal cortex. Journal of Vision, 2017, 17, 1236.	0.3	0

#	Article	IF	CITATIONS
91	Visual cortex connectivity variability in congenitally blind individuals. Journal of Vision, 2019, 19, 159c.	0.3	O