Frederik Damm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264459/publications.pdf

Version: 2024-02-01

59 papers

3,896 citations

218677
26
h-index

56 g-index

60 all docs

60 docs citations

60 times ranked 5470 citing authors

#	Article	IF	CITATIONS
1	Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia, 2022, 36, 1102-1110.	7.2	14
2	Acute left ventricular insufficiency in a Burkitt Lymphoma patient with myocardial involvement and extensive local tumor cell lysis: a case report. BMC Cardiovascular Disorders, 2022, 22, 31.	1.7	2
3	Clonal hematopoiesis is associated with improved survival in patients with metastatic colorectal cancer from the FIRE-3 trial. Blood, 2022, 139, 1593-1597.	1.4	21
4	Clonal hematopoiesis of indeterminate potential-related epigenetic age acceleration correlates with clonal hematopoiesis of indeterminate potential clone size in patients with high morbidity. Haematologica, 2022, 107, 1703-1708.	3.5	8
5	Refining AML Treatment: The Role of Genetics in Response and Resistance Evaluation to New Agents. Cancers, 2022, 14, 1689.	3.7	6
6	The landscape of genetic aberrations in myxofibrosarcoma. International Journal of Cancer, 2022, 151, 565-577.	5.1	13
7	The clinical implications of clonal hematopoiesis in hematopoietic cell transplantation. Blood Reviews, 2021, 46, 100744.	5.7	16
8	Haematopoietic ageing through the lens of single-cell technologies. DMM Disease Models and Mechanisms, $2021,14,.$	2.4	6
9	A genetically defined signature of responsiveness to erlotinib in early-stage pancreatic cancer patients: Results from the CONKO-005 trial. EBioMedicine, 2021, 66, 103327.	6.1	16
10	Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Advances, 2021, 5, 2391-2402.	5.2	10
11	Clonal hematopoiesis and its emerging effects on cellular therapies. Leukemia, 2021, 35, 2752-2758.	7.2	21
12	Singleâ€cell omics: Overview, analysis, and application in biomedical science. Journal of Cellular Biochemistry, 2021, 122, 1571-1578.	2.6	18
13	Genomic Landscape and Clonal Evolution of AML. Hematologic Malignancies, 2021, , 103-118.	0.2	0
14	Single-cell analysis based dissection of clonality in myelofibrosis. Nature Communications, 2020, 11, 73.	12.8	46
15	Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer Journal, 2020, 10, 38.	6.2	7
16	Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica, 2020, 105, e264-e267.	3.5	56
17	<i>TP53</i> Mutations Predict Sensitivity to Adjuvant Gemcitabine in Patients with Pancreatic Ductal Adenocarcinoma: Next-Generation Sequencing Results from the CONKO-001 Trial. Clinical Cancer Research, 2020, 26, 3732-3739.	7.0	28
18	A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discovery, 2019, 9, 796-811.	9.4	30

#	Article	IF	CITATIONS
19	Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2019, 37, 375-385.	1.6	163
20	Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. Blood, 2019, 133, 1140-1151.	1,4	96
21	Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia, 2018, 32, 1908-1919.	7.2	137
22	The hypomorphic TERT A1062T variant is associated with increased treatment-related toxicity in acute myeloid leukemia. Annals of Hematology, 2017, 96, 895-904.	1.8	7
23	Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma. Blood, 2016, 128, 2666-2670.	1.4	82
24	<i>TET2</i> mutations in cytogenetically normal acute myeloid leukemia: Clinical implications and evolutionary patterns. Genes Chromosomes and Cancer, 2014, 53, 824-832.	2.8	27
25	14q deletions are associated with trisomy 12, <i>NOTCH1</i> mutations and unmutated <i>IGHV</i> genes in chronic lymphocytic leukemia and small lymphocytic lymphoma. Genes Chromosomes and Cancer, 2014, 53, 657-666.	2.8	25
26	Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood, 2014, 123, 914-920.	1.4	167
27	Acquired Initiating Mutations in Early Hematopoietic Cells of CLL Patients. Cancer Discovery, 2014, 4, 1088-1101.	9.4	213
28	Lack of noncanonical RAS mutations in cytogenetically normal acute myeloid leukemia. Annals of Hematology, 2014, 93, 977-982.	1.8	6
29	Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia. Haematologica, 2014, 99, 1456-1464.	3.5	26
30	Prognostic significance of expression levels of stem cell regulators MSI2 and NUMB in acute myeloid leukemia. Annals of Hematology, 2013, 92, 315-323.	1.8	48
31	<i><scp>NADH</scp> dehydrogenase subunit 4</i> variant sequences in childhood acute myeloid leukaemia. British Journal of Haematology, 2013, 161, 891-895.	2.5	3
32	BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood, 2013, 122, 3169-3177.	1.4	169
33	STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model. Haematologica, 2013, 98, 1748-1752.	3.5	50
34	The Clinical and Prognostic Influence Of Mutations In The Cohesin Complex In Acute Myeloid Leukemia. Blood, 2013, 122, 1314-1314.	1.4	0
35	Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood, 2012, 119, 3211-3218.	1.4	220
36	Prognostic significance of combined MN1, ERG, BAALC, and EVI1 (MEBE) expression in patients with myelodysplastic syndromes. Annals of Hematology, 2012, 91, 1221-1233.	1.8	37

#	Article	IF	CITATIONS
37	Nextâ€generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with <i>FLT3</i> à€ITD or <i>NPM1</i> mutations. Genes Chromosomes and Cancer, 2012, 51, 689-695.	2.8	114
38	<i><scp>ID</scp>1</i> expression associates with other molecular markers and is not an independent prognostic factor in cytogenetically normal acute myeloid leukaemia. British Journal of Haematology, $2012, 158, 208-215.$	2.5	9
39	Clinical Impact of TERT A1062T Mutations in Younger Patients with Acute Myeloblastic Leukemia. Blood, 2012, 120, 1381-1381.	1.4	2
40	Spliceosome mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia. Oncotarget, 2012, 3, 1284-1293.	1.8	19
41	Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood, 2011, 117, 2469-2475.	1.4	341
42	Incidence and Prognostic Influence of <i>DNMT3A</i> Mutations in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2011, 29, 2889-2896.	1.6	351
43	Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica, 2011, 96, 1870-1873.	3.5	67
44	Integrative prognostic risk score in acute myeloid leukemia with normal karyotype. Blood, 2011, 117, 4561-4568.	1.4	99
45	DNMT3A mutations are rare in childhood acute myeloid leukemia. Haematologica, 2011, 96, 1238-1240.	3.5	34
46	FLT3-internal tandem duplication and age are the major prognostic factors in patients with relapsed acute myeloid leukemia with normal karyotype. Haematologica, 2011, 96, 681-686.	3.5	45
47	Genetic changes of miR-182 G106A: rather a polymorphism than a somatic mutation. Annals of Hematology, 2011, 90, 1107-1109.	1.8	1
48	Prognostic Importance of Histone Methyltransferase <i>MLL5</i> Expression in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2011, 29, 682-689.	1.6	53
49	Prognostic Significance of <i> ASXL1 < i > Mutations in Patients With Myelodysplastic Syndromes. Journal of Clinical Oncology, 2011, 29, 2499-2506.</i>	1.6	258
50	Reply to S. Masuda. Journal of Clinical Oncology, 2011, 29, 4593-4594.	1.6	2
51	ID1 Expression Correlates with CEBPA Mutational Status and Is Not An Independent Risk Factor in Cytogenetically Normal AML,. Blood, 2011, 118, 3554-3554.	1.4	O
52	Next Generation Sequencing for Minimal Residual Disease Monitoring in AML Patients with FLT3-ITD,. Blood, 2011, 118, 3548-3548.	1.4	0
53	IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica, 2010, 95, 1668-1674.	3.5	177
54	Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood, 2010, 116, 614-616.	1.4	170

#	Article	IF	CITATIONS
55	Reply to I.H.I.M. Hollink et al. Journal of Clinical Oncology, 2010, 28, e527-e528.	1.6	4
56	Phosphoinositide Phospholipase $C\hat{l}^21$ (<i>PI-PLC</i> \hat{l}^2 <i>1</i>) Gene in Myelodysplastic Syndromes and Cytogenetically Normal Acute Myeloid Leukemia: Not a Deletion, but Increased <i>PI-PLC</i> \hat{l}^2 <i>1</i> Expression Is an Independent Prognostic Factor. Journal of Clinical Oncology, 2010, 28, e384-e387.	1.6	5
57	Single Nucleotide Polymorphism in the Mutational Hotspot of <i>WT1</i> Predicts a Favorable Outcome in Patients With Cytogenetically Normal Acute Myeloid Leukemia. Journal of Clinical Oncology, 2010, 28, 578-585.	1.6	119
58	Impact of $\langle i \rangle$ IDH1 $\langle i \rangle$ R132 Mutations and an $\langle i \rangle$ IDH1 $\langle i \rangle$ Single Nucleotide Polymorphism in Cytogenetically Normal Acute Myeloid Leukemia: SNP rs11554137 Is an Adverse Prognostic Factor. Journal of Clinical Oncology, 2010, 28, 2356-2364.	1.6	229
59	FLT3-ITD and Age Are the Major Prognostic Factors In Relapsed AML with Normal Karyotype. Blood, 2010, 116, 1719-1719.	1.4	1