List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2643602/publications.pdf Version: 2024-02-01



Μλακιίς Βλάτη

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Simultaneous multislice (SMS) imaging techniques. Magnetic Resonance in Medicine, 2016, 75, 63-81.                                                                                                                                                 | 3.0 | 420       |
| 2  | Three dimensional echo-planar imaging at 7 Tesla. NeuroImage, 2010, 51, 261-266.                                                                                                                                                                   | 4.2 | 266       |
| 3  | High-Resolution MR Venography at 3.0 Tesla. Journal of Computer Assisted Tomography, 2000, 24, 949-957.                                                                                                                                            | 0.9 | 190       |
| 4  | Layerâ€specific BOLD activation in human V1. Human Brain Mapping, 2010, 31, 1297-1304.                                                                                                                                                             | 3.6 | 190       |
| 5  | Magnetic susceptibility-weighted MR phase imaging of the human brain. American Journal of Neuroradiology, 2005, 26, 736-42.                                                                                                                        | 2.4 | 181       |
| 6  | Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neurolmage, 2015, 111, 622-630.                                                                                                                             | 4.2 | 157       |
| 7  | Multi-echo fMRI of the cortical laminae in humans at 7T. NeuroImage, 2011, 56, 1276-1285.                                                                                                                                                          | 4.2 | 152       |
| 8  | A cortical vascular model for examining the specificity of the laminar BOLD signal. NeuroImage, 2016, 132, 491-498.                                                                                                                                | 4.2 | 136       |
| 9  | Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 54, 87-95.                                          | 3.0 | 130       |
| 10 | Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by<br>navigated electrocortical stimulation and postoperative outcome. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2005, 76, 1152-1157. | 1.9 | 125       |
| 11 | Memory stabilization with targeted reactivation during human slow-wave sleep. Proceedings of the<br>National Academy of Sciences of the United States of America, 2012, 109, 10575-10580.                                                          | 7.1 | 121       |
| 12 | Power independent of number of slices (PINS) radiofrequency pulses for lowâ€power simultaneous<br>multislice excitation. Magnetic Resonance in Medicine, 2011, 66, 1234-1240.                                                                      | 3.0 | 110       |
| 13 | Magnetic Resonance Imaging Contrast Enhancement of Brain Tumors at 3 Tesla Versus 1.5 Tesla.<br>Investigative Radiology, 2002, 37, 114-119.                                                                                                        | 6.2 | 107       |
| 14 | MR venography of the human brain using susceptibility weighted imaging at very high field strength.<br>Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 149-158.                                                          | 2.0 | 107       |
| 15 | Linear reconstruction of perceived images from human brain activity. Neurolmage, 2013, 83, 951-961.                                                                                                                                                | 4.2 | 103       |
| 16 | Automated unwrapping of MR phase images applied to BOLD MR-venography at 3 Tesla. Journal of<br>Magnetic Resonance Imaging, 2003, 18, 175-180.                                                                                                     | 3.4 | 98        |
| 17 | Sleep Supports Selective Retention of Associative Memories Based on Relevance for Future Utilization.<br>PLoS ONE, 2012, 7, e43426.                                                                                                                | 2.5 | 96        |
| 18 | Wavelet-based multifractal analysis of fMRI time series. NeuroImage, 2004, 22, 1195-1202.                                                                                                                                                          | 4.2 | 89        |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A quantitative comparison of functional MRI cluster analysis. Artificial Intelligence in Medicine, 2004,<br>31, 57-71.                                                                                                                                     | 6.5  | 84        |
| 20 | DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping.<br>NeuroImage, 2019, 195, 373-383.                                                                                                                    | 4.2  | 84        |
| 21 | Phase unwrapping of MR images using ΦUN – A fast and robust region growing algorithm. Medical<br>Image Analysis, 2009, 13, 257-268.                                                                                                                        | 11.6 | 82        |
| 22 | 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. Journal of Magnetic<br>Resonance Imaging, 2011, 33, 782-791.                                                                                                             | 3.4  | 74        |
| 23 | Influence of fMRI smoothing procedures on replicability of fine scale motor localization.<br>NeuroImage, 2005, 24, 323-331.                                                                                                                                | 4.2  | 71        |
| 24 | Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. Journal of Magnetic Resonance Imaging,<br>2007, 25, 1263-1270.                                                                                                                               | 3.4  | 71        |
| 25 | Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.                                                                                                                                               | 12.0 | 65        |
| 26 | Serial correlations in single-subject fMRI with sub-second TR. NeuroImage, 2018, 166, 152-166.                                                                                                                                                             | 4.2  | 61        |
| 27 | Robust field map generation using a triple-echo acquisition. Journal of Magnetic Resonance Imaging, 2004, 20, 730-734.                                                                                                                                     | 3.4  | 59        |
| 28 | Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T.<br>NeuroImage, 2015, 109, 378-387.                                                                                                                     | 4.2  | 59        |
| 29 | Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T. NeuroImage, 2015, 119, 352-361.                                                                                      | 4.2  | 58        |
| 30 | A method for the dynamic correction of B 0 -related distortions in single-echo EPI at 7 T. NeuroImage, 2018, 168, 321-331.                                                                                                                                 | 4.2  | 57        |
| 31 | High-Resolution Three-Dimensional Contrast-Enhanced Blood Oxygenation Level-Dependent Magnetic<br>Resonance Venography of Brain Tumors at 3 Tesla: First Clinical Experience and Comparison with 1.5<br>Tesla. Investigative Radiology, 2003, 38, 409-414. | 6.2  | 56        |
| 32 | Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T. NeuroImage, 2012, 62, 1939-1946.                                                                                                                                  | 4.2  | 56        |
| 33 | Echo timeâ€dependent quantitative susceptibility mapping contains information on tissue properties.<br>Magnetic Resonance in Medicine, 2017, 77, 1946-1958.                                                                                                | 3.0  | 56        |
| 34 | High-resolution, multiple gradient-echo functional MRI at 1.5 T. Magnetic Resonance Imaging, 1999, 17,<br>321-329.                                                                                                                                         | 1.8  | 54        |
| 35 | Layer-specific diffusion weighted imaging in human primary visual cortex inÂvitro. Cortex, 2013, 49,<br>2569-2582.                                                                                                                                         | 2.4  | 54        |
| 36 | Scaling laws and persistence in human brain activity. Physica A: Statistical Mechanics and Its<br>Applications, 2003, 326, 511-521.                                                                                                                        | 2.6  | 53        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | T1 mapping of the entire lung parenchyma: Influence of the respiratory phase in healthy individuals.<br>Journal of Magnetic Resonance Imaging, 2005, 21, 759-764.                                                                              | 3.4 | 53        |
| 38 | T1 mapping of the entire lung parenchyma: Influence of respiratory phase and correlation to lung<br>function test results in patients with diffuse lung disease. Magnetic Resonance in Medicine, 2008, 59,<br>96-101.                          | 3.0 | 51        |
| 39 | MR Contrast Agent at High-Field MRI (3 Tesla). Topics in Magnetic Resonance Imaging, 2003, 14, 365-375.                                                                                                                                        | 1.2 | 50        |
| 40 | Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3ÂT. NMR in Biomedicine, 2017, 30, e3833.                                                                    | 2.8 | 49        |
| 41 | Combining phase images from array coils using a short echo time reference scan ( COMPOSER ).<br>Magnetic Resonance in Medicine, 2017, 77, 318-327.                                                                                             | 3.0 | 49        |
| 42 | Functional connectivity during light sleep is correlated with memory performance for face–location associations. NeuroImage, 2011, 57, 262-270.                                                                                                | 4.2 | 46        |
| 43 | Measuring the effects of attention to individual fingertips in somatosensory cortex using ultra-high<br>field (7T) fMRI. Neurolmage, 2017, 161, 179-187.                                                                                       | 4.2 | 45        |
| 44 | Contrast-Enhanced, High-Resolution, Susceptibility-Weighted Magnetic Resonance Imaging of the<br>Brain. Investigative Radiology, 2006, 41, 249-255.                                                                                            | 6.2 | 42        |
| 45 | Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magnetic Resonance in Medicine, 2014, 71, 44-49.                                                                       | 3.0 | 42        |
| 46 | Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: A comparison with gradient-echo EPI using a color-word Stroop task. NeuroImage, 2014, 97, 142-150.                                                                            | 4.2 | 42        |
| 47 | Bayesian population receptive field modeling in human somatosensory cortex. NeuroImage, 2020, 208, 116465.                                                                                                                                     | 4.2 | 41        |
| 48 | Fuzzy cluster analysis of high-field functional MRI data. Artificial Intelligence in Medicine, 2003, 29, 203-223.                                                                                                                              | 6.5 | 40        |
| 49 | Generalized iNverse imaging (GIN): Ultrafast fMRI with physiological noise correction. Magnetic<br>Resonance in Medicine, 2013, 70, 962-971.                                                                                                   | 3.0 | 40        |
| 50 | Very high-resolution three-dimensional functional MRI of the human visual cortex with elimination of large venous vessels. NMR in Biomedicine, 2007, 20, 477-484.                                                                              | 2.8 | 38        |
| 51 | Susceptibility weighted magnetic resonance imaging of cerebral cavernous malformations: prospects,<br>drawbacks, and first experience at ultra–high field strength (7-Tesla) magnetic resonance imaging.<br>Neurosurgical Focus, 2010, 29, E5. | 2.3 | 38        |
| 52 | Improved elimination of phase effects from background field inhomogeneities for susceptibility<br>weighted imaging at high magnetic field strengths. Magnetic Resonance Imaging, 2008, 26, 1145-1151.                                          | 1.8 | 37        |
| 53 | Functional MRI of the human motor cortex using single-shot, multiple gradient-echo spiral imaging.<br>Magnetic Resonance Imaging, 1999, 17, 1239-1243.                                                                                         | 1.8 | 35        |
| 54 | <i>T</i> <sub>2</sub> -weighted 3D fMRI using <i>S</i> <sub>2</sub> -SSFP at 7 tesla. Magnetic Resonance<br>in Medicine, 2010, 63, 1015-1020.                                                                                                  | 3.0 | 34        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Referenceâ€free unwarping of EPI data using dynamic offâ€resonance correction with multiecho<br>acquisition (DOCMA). Magnetic Resonance in Medicine, 2012, 68, 1247-1254.                         | 3.0 | 32        |
| 56 | Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T). NeuroImage, 2018, 172, 886-895.            | 4.2 | 32        |
| 57 | Electrophysiological Correlation Patterns of Resting State Networks in Single Subjects: A Combined<br>EEG–fMRI Study. Brain Topography, 2013, 26, 98-109.                                         | 1.8 | 31        |
| 58 | An Investigation of RSN Frequency Spectra Using Ultra-Fast Generalized Inverse Imaging. Frontiers in<br>Human Neuroscience, 2013, 7, 156.                                                         | 2.0 | 30        |
| 59 | New acquisition techniques and their prospects for the achievable resolution of fMRI. Progress in Neurobiology, 2021, 207, 101936.                                                                | 5.7 | 27        |
| 60 | Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.                                             | 5.3 | 27        |
| 61 | Explorative signal processing in functional MR imaging. International Journal of Imaging Systems and Technology, 1999, 10, 166-176.                                                               | 4.1 | 26        |
| 62 | Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7ÂT. NeuroImage, 2018, 182, 407-416.                                      | 4.2 | 26        |
| 63 | Singleâ€shot echoâ€planar imaging with Nyquist ghost compensation: Interleaved dual echo with<br>acceleration (IDEA) echoâ€planar imaging (EPI). Magnetic Resonance in Medicine, 2013, 69, 37-47. | 3.0 | 23        |
| 64 | Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Scientific Reports, 2018, 8, 16958.                                                  | 3.3 | 23        |
| 65 | SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network. Zeitschrift Fur Medizinische Physik, 2019, 29, 139-149.    | 1.5 | 22        |
| 66 | Advances in High-Field BOLD fMRI. Materials, 2011, 4, 1941-1955.                                                                                                                                  | 2.9 | 21        |
| 67 | BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla. Frontiers in Neuroscience, 2014, 8, 49.                                                                                           | 2.8 | 21        |
| 68 | Correcting dynamic distortions in 7T echo planar imaging using a jittered echo time sequence.<br>Magnetic Resonance in Medicine, 2016, 76, 1388-1399.                                             | 3.0 | 20        |
| 69 | Modulation of signal changes in gradient-recalled echo functional MRI with increasing echo time correlate with model calculations. Magnetic Resonance Imaging, 1997, 15, 745-752.                 | 1.8 | 19        |
| 70 | Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. NeuroImage, 2021, 237, 118175.                       | 4.2 | 19        |
| 71 | Title is missing!. Investigative Radiology, 2003, 38, 409-414.                                                                                                                                    | 6.2 | 18        |
| 72 | FMRI reveals functional cortex in a case of inconclusive Wada testing. Clinical Neurology and Neurosurgery, 2005, 107, 147-151.                                                                   | 1.4 | 18        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects. European Radiology, 2007, 17, 1634-1643.                                                                                                 | 4.5 | 18        |
| 74 | A study-specific fMRI normalization approach that operates directly on high resolution functional EPI<br>data at 7Tesla. NeuroImage, 2014, 100, 710-714.                                                                                                          | 4.2 | 18        |
| 75 | A timeâ€efficient acquisition protocol for multipurpose diffusionâ€weighted microstructural imaging at<br>7 Tesla. Magnetic Resonance in Medicine, 2017, 78, 2170-2184.                                                                                           | 3.0 | 18        |
| 76 | 7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magnetic Resonance<br>Imaging, 2019, 61, 1-8.                                                                                                                                | 1.8 | 18        |
| 77 | Structure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging. NeuroImage, 2012, 59, 3941-3954.                                                                                                              | 4.2 | 17        |
| 78 | The Quest for EEG Power Band Correlation with ICA Derived fMRI Resting State Networks. Frontiers in Human Neuroscience, 2013, 7, 315.                                                                                                                             | 2.0 | 17        |
| 79 | ECG Triggering in Ultra-High Field Cardiovascular MRI. Tomography, 2016, 2, 167-174.                                                                                                                                                                              | 1.8 | 17        |
| 80 | The challenge of biasâ€free coil combination for quantitative susceptibility mapping at ultraâ€high field.<br>Magnetic Resonance in Medicine, 2018, 79, 97-107.                                                                                                   | 3.0 | 17        |
| 81 | Robust SENSE reconstruction of simultaneous multislice EPI with lowâ€rank enhanced coil sensitivity calibration and sliceâ€dependent 2D Nyquist ghost correction. Magnetic Resonance in Medicine, 2018, 80, 1376-1390.                                            | 3.0 | 16        |
| 82 | Adaptive <scp>SAR</scp> massâ€averaging framework to improve predictions of local <scp>RF</scp><br>heating near a hip implant for parallel transmit at 7 <scp>T</scp> . Magnetic Resonance in Medicine,<br>2019, 81, 615-627.                                     | 3.0 | 15        |
| 83 | Simultaneous multislice inversion contrast imaging using power independent of the number of slices<br>(PINS) and delays alternating with nutation for tailored excitation (DANTE) radio frequency pulses.<br>Magnetic Resonance in Medicine, 2013, 69, 1670-1676. | 3.0 | 14        |
| 84 | From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet.<br>Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 309-311.                                                                               | 2.0 | 14        |
| 85 | Online decoding of objectâ€based attention using realâ€ŧime f <scp>MRI</scp> . European Journal of<br>Neuroscience, 2014, 39, 319-329.                                                                                                                            | 2.6 | 13        |
| 86 | Pulsed arterial spin labelling at ultra-high field with a B 1 + -optimised adiabatic labelling pulse.<br>Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 463-473.                                                                       | 2.0 | 13        |
| 87 | Non-linear realignment improves hippocampus subfield segmentation reliability. NeuroImage, 2019, 203, 116206.                                                                                                                                                     | 4.2 | 13        |
| 88 | Characterization of BOLD activation in multi-echo fMRI data using fuzzy cluster analysis and a comparison with quantitative modeling. NMR in Biomedicine, 2001, 14, 484-489.                                                                                      | 2.8 | 12        |
| 89 | Quantification of signal changes in gradient recalled echo FMRI. Magnetic Resonance Imaging, 1997, 15,<br>753-762.                                                                                                                                                | 1.8 | 11        |
| 90 | A populationâ€specific symmetric phase model to automatically analyze susceptibilityâ€weighted imaging<br>(SWI) phase shifts and phase symmetry in the human brain. Journal of Magnetic Resonance Imaging,<br>2010, 31, 215-220.                                  | 3.4 | 11        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Filtered deconvolution of a simulated and an in vivo phase model of the human brain. Journal of<br>Magnetic Resonance Imaging, 2010, 32, 289-297.                                                                     | 3.4 | 11        |
| 92  | Selective channel combination of MRI signal phase. Magnetic Resonance in Medicine, 2016, 76, 1469-1477.                                                                                                               | 3.0 | 11        |
| 93  | PECâ€GRAPPA reconstruction of simultaneous multislice EPI with sliceâ€dependent 2D Nyquist ghost correction. Magnetic Resonance in Medicine, 2019, 81, 1924-1934.                                                     | 3.0 | 11        |
| 94  | Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI.<br>Neurolmage, 2020, 218, 116798.                                                                                     | 4.2 | 11        |
| 95  | QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping. Magnetic<br>Resonance in Medicine, 2022, 87, 1289-1300.                                                                         | 3.0 | 11        |
| 96  | Comparison of multi-echo spiral and echo planar imaging in functional MRI. Magnetic Resonance<br>Imaging, 2002, 20, 359-364.                                                                                          | 1.8 | 10        |
| 97  | Contrast Enhanced Susceptibility Weighted Imaging (CE-SWI) of the Mouse Brain Using Ultrasmall<br>Superparamagnetic Ironoxide Particles (USPIO). Zeitschrift Fur Medizinische Physik, 2006, 16, 269-274.              | 1.5 | 10        |
| 98  | Accelerated mapping of magnetic susceptibility using 3D planesâ€onâ€aâ€paddlewheel (POP) EPI at ultraâ€high<br>field strength. NMR in Biomedicine, 2017, 30, e3620.                                                   | 2.8 | 10        |
| 99  | Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep<br>learning estimation. Magnetic Resonance in Medicine, 2021, 85, 2462-2476.                                         | 3.0 | 10        |
| 100 | Cardiac Magnetic Resonance Imaging at 7 Tesla. Journal of Visualized Experiments, 2019, , .                                                                                                                           | 0.3 | 7         |
| 101 | A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T. Magnetic Resonance in Medicine, 2019, 81, 3826-3839.                                                   | 3.0 | 6         |
| 102 | Patient with ALS with a novel TBK1 mutation, widespread brain involvement, behaviour changes and metabolic dysfunction. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 952-954.                         | 1.9 | 6         |
| 103 | 7-Tesla Functional Cardiovascular MR Using Vectorcardiographic Triggering—Overcoming the<br>Magnetohydrodynamic Effect. Tomography, 2021, 7, 323-332.                                                                 | 1.8 | 3         |
| 104 | Modeling and suppression of respiration induced B0-fluctuations in non-balanced steady-state free precession sequences at 7 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 377-387. | 2.0 | 2         |
| 105 | Towards Optimising MRI Characterisation of Tissue (TOMCAT) Dataset including all Longitudinal<br>Automatic Segmentation of Hippocampal Subfields (LASHIS) data. Data in Brief, 2020, 32, 106043.                      | 1.0 | 2         |
| 106 | Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters. Frontiers in<br>Neuroscience, 2020, 14, 271.                                                                                            | 2.8 | 2         |
| 107 | Field strength influences on gradient recalled echo MRI signal compartment frequency shifts.<br>Magnetic Resonance Imaging, 2020, 70, 98-107.                                                                         | 1.8 | 1         |