Carmen Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2642903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Seminars in Cell and Developmental Biology, 2022, 132, 51-61.	5.0	9
2	SUMOylation modulates the stability and function of PI3K-p110β. Cellular and Molecular Life Sciences, 2021, 78, 4053-4065.	5.4	11
3	Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. MBio, 2021, 12, e0097221.	4.1	6
4	The Interaction of Viruses with the Cellular Senescence Response. Biology, 2020, 9, 455.	2.8	25
5	SUMO and Cytoplasmic RNA Viruses: From Enemies to Best Friends. Advances in Experimental Medicine and Biology, 2020, 1233, 263-277.	1.6	14
6	Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function. FASEB Journal, 2019, 33, 643-651.	0.5	20
7	Regulation of the Ebola Virus VP24 Protein by SUMO. Journal of Virology, 2019, 94, .	3.4	19
8	Susceptibility of Zebrafish to Vesicular Stomatitis Virus Infection. Zebrafish, 2018, 15, 124-132.	1.1	16
9	Phosphorylable tyrosine residue 162 in the double-stranded RNA-dependent kinase PKR modulates its interaction with SUMO. Scientific Reports, 2017, 7, 14055.	3.3	6
10	Regulation of Ebola virus VP40 matrix protein by SUMO. Scientific Reports, 2016, 6, 37258.	3.3	17
11	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	3.3	70
12	Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene, 2016, 35, 2873-2880.	5.9	21
13	KSHV latent protein LANA2 inhibits sumo2 modification of p53. Cell Cycle, 2015, 14, 277-282.	2.6	17
14	SUMOylation regulates AKT1 activity. Oncogene, 2015, 34, 1442-1450.	5.9	39
15	Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods, 2015, 77-78, 112-118.	3.8	14
16	Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget, 2015, 6, 2992-3002.	1.8	14
17	Activation of the Double-stranded RNA-dependent Protein Kinase PKR by Small Ubiquitin-like Modifier (SUMO). Journal of Biological Chemistry, 2014, 289, 26357-26367.	3.4	22
18	The impact of PKR activation: from neurodegeneration to cancer. FASEB Journal, 2014, 28, 1965-1974.	0.5	90

CARMEN RIVAS

#	Article	IF	CITATIONS
19	Experimental Evolution of an Oncolytic Vesicular Stomatitis Virus with Increased Selectivity for p53-Deficient Cells. PLoS ONE, 2014, 9, e102365.	2.5	21
20	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
21	Kaposi's sarcoma-associated herpesvirus lana2 protein interacts with the pocket proteins and inhibits their sumoylation. Oncogene, 2014, 33, 495-503.	5.9	17
22	Analysis of SUMOylated proteins using SUMO-traps. Scientific Reports, 2013, 3, 1690.	3.3	32
23	Rotavirus Viroplasm Proteins Interact with the Cellular SUMOylation System: Implications for Viroplasm-Like Structure Formation. Journal of Virology, 2013, 87, 807-817.	3.4	24
24	SUMOylation of p53 mediates interferon activities. Cell Cycle, 2013, 12, 2809-2816.	2.6	23
25	Regulation of the tumor suppressor PTEN by SUMO. Cell Death and Disease, 2012, 3, e393-e393.	6.3	68
26	SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation, 2011, 18, 72-79.	11.2	49
27	Acetylation is indispensable for p53 antiviral activity. Cell Cycle, 2011, 10, 3701-3705.	2.6	41
28	Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2. Journal of General Virology, 2011, 92, 188-194.	2.9	32
29	Regulation of Vaccinia Virus E3 Protein by Small Ubiquitin-Like Modifier Proteins. Journal of Virology, 2011, 85, 12890-12900.	3.4	27
30	The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells. PLoS ONE, 2011, 6, e23887.	2.5	47
31	Role of Monoubiquitylation on the Control of IκBα Degradation and NF-κB Activity. PLoS ONE, 2011, 6, e25397.	2.5	16
32	Antiviral activity of resveratrol. Biochemical Society Transactions, 2010, 38, 50-53.	3.4	117
33	Dual Role of p53 in Innate Antiviral Immunity. Viruses, 2010, 2, 298-313.	3.3	101
34	Kaposi's Sarcoma-Associated Herpesvirus Protein LANA2 Disrupts PML Oncogenic Domains and Inhibits PML-Mediated Transcriptional Repression of the Survivin Gene. Journal of Virology, 2009, 83, 8849-8858.	3.4	75
35	Activation of NF-kB Pathway by Virus Infection Requires Rb Expression. PLoS ONE, 2009, 4, e6422.	2.5	32
36	Induction of Paclitaxel Resistance by the Kaposi's Sarcoma-Associated Herpesvirus Latent Protein LANA2. Journal of Virology, 2008, 82, 1518-1525.	3.4	18

CARMEN RIVAS

#	Article	IF	CITATIONS
37	The Sequential Activation of the Yeast HOG and SLT2 Pathways Is Required for Cell Survival to Cell Wall Stress. Molecular Biology of the Cell, 2008, 19, 1113-1124.	2.1	183
38	Control of virus infection by tumour suppressors. Carcinogenesis, 2007, 28, 1140-1144.	2.8	9
39	Novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. Future Virology, 2007, 2, 625-629.	1.8	1
40	Latent Protein LANA2 from Kaposi's Sarcoma-Associated Herpesvirus Interacts with 14-3-3 Proteins and Inhibits FOXO3a Transcription Factor. Journal of Virology, 2007, 81, 1511-1516.	3.4	48
41	Characterization of a human Bid homologue protein from Gallus gallus. Gene, 2006, 372, 26-32.	2.2	2
42	Antiviral action of the tumor suppressor ARF. EMBO Journal, 2006, 25, 4284-4292.	7.8	43
43	Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative Action. Microbiology and Molecular Biology Reviews, 2006, 70, 1032-1060.	6.6	656
44	Resistance to viral infection of super p53 mice. Oncogene, 2005, 24, 3059-3062.	5.9	66
45	Characterization of MDGA1, a novel human glycosylphosphatidylinositol-anchored protein localized in lipid rafts. Experimental Cell Research, 2005, 307, 91-99.	2.6	16
46	Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Experimental Cell Research, 2005, 311, 96-105.	2.6	20
47	The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. Journal of General Virology, 2003, 84, 1463-1470.	2.9	70
48	Characterization of the bipartite nuclear localization signal of protein LANA2 from Kaposi's sarcoma-associated herpesvirus. Biochemical Journal, 2003, 374, 545-550.	3.7	10
49	Kaposi's Sarcoma-Associated Herpesvirus LANA2 Is a B-Cell-Specific Latent Viral Protein That Inhibits p53. Journal of Virology, 2001, 75, 429-438.	3.4	258
50	BCR-ABL and Interleukin 3 Promote Haematopoietic Cell Proliferation and Survival through Modulation of Cyclin D2 and p27Kip1 Expression. Journal of Biological Chemistry, 2001, 276, 23572-23580.	3.4	94
51	BCR-ABL-Expressing Cells Transduced with the HSV-tk Gene Die by Apoptosis upon Treatment with Ganciclovir. Molecular Therapy, 2001, 3, 642-652.	8.2	7
52	Absence of in vitro or in vivo bystander effects in a thymidine kinase-transduced murine T lymphoma. Cancer Gene Therapy, 2000, 7, 954-962.	4.6	13
53	Inhibition of the Phosphoinositide 3-Kinase Pathway Induces a Senescence-like Arrest Mediated by p27Kip1. Journal of Biological Chemistry, 2000, 275, 21960-21968.	3.4	231
54	Identification of Functional Domains of the Interferon-Induced Enzyme PKR in Cells Lacking Endogenous PKR. Journal of Interferon and Cytokine Research, 1999, 19, 1229-1236.	1.2	5

CARMEN RIVAS

#	Article	IF	CITATIONS
55	Full Activation of RNaseL in Animal Cells Requires Binding of 2-5A Within Ankyrin Repeats 6 to 9 of This Interferon-Inducible Enzyme. Journal of Interferon and Cytokine Research, 1999, 19, 113-119.	1.2	10
56	Vaccinia Virus E3L Protein Is an Inhibitor of the Interferon (IFN)-Induced 2-5A Synthetase Enzyme. Virology, 1998, 243, 406-414.	2.4	142
57	Replication and morphogenesis of the turbot aquareovirus (TRV) in cell culture. Aquaculture, 1998, 160, 47-62.	3.5	13
58	Inducible Expression of the 2-5A Synthetase/RNase L System Results in Inhibition of Vaccinia Virus Replication. Virology, 1997, 227, 220-228.	2.4	66
59	Activation of the IFN-Inducible Enzyme RNase L Causes Apoptosis of Animal Cells. Virology, 1997, 236, 354-363.	2.4	136
60	African Swine Fever Virus GeneA179L,a Viral Homologue ofbcl-2, Protects Cells from Programmed Cell Death. Virology, 1996, 225, 227-230.	2.4	110
61	Effect of the turbot aquareovirus on fish macrophages using an in vitro model. Diseases of Aquatic Organisms, 1996, 25, 209-216.	1.0	2
62	In vitro and in vivo replication of turbot aquareovirus (TRV) in turbot tissues. Diseases of Aquatic Organisms, 1996, 25, 217-223.	1.0	7
63	Pathogenicity of birnaviruses isolated from turbot (Scophthalmus maximus): comparison with reference serotypes of IPNV. Aquaculture, 1995, 130, 7-14.	3.5	12
64	Effect of serum factors on the survival of Renibacterium salmoninarum within rainbow trout macrophages. Diseases of Aquatic Organisms, 1995, 23, 221-227.	1.0	19
65	H.P3 Replication of aquareovirus TRV in turbot macrophages. Developmental and Comparative Immunology, 1994, 18, S140.	2.3	0
66	Efficacy of Chemical Disinfectants against Turbot Aquareovirus. Applied and Environmental Microbiology, 1994, 60, 2168-2169.	3.1	9
67	Toxicity of the extracellular products ofVibrio damsela isolated from diseased fish. Current Microbiology, 1993, 27, 341-347.	2.2	48
68	Marine environment as reservoir of birnaviruses from poikilothermic animals. Aquaculture, 1993, 115, 183-194.	3.5	22
69	Pathogenic activities of live cells and extracellular products of the fish pathogen Pasteurella piscicida. Journal of General Microbiology, 1992, 138, 2491-2498.	2.3	78
70	Comparison of five fish rotaviruses by crossneutralization tests. Aquaculture, 1992, 107, 131-134.	3.5	0