Enrico Schleiff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2642733/publications.pdf

Version: 2024-02-01

210 papers 9,987 citations

23567 58 h-index 48315 88 g-index

213 all docs

213 docs citations

times ranked

213

8772 citing authors

#	Article	IF	Citations
1	HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Cell Reports, 2022, 38, 110224.	6.4	14
2	Retrograde Analysis of Calcium Signaling by CaMPARI2 Shows Cytosolic Calcium in Chondrocytes Is Unaffected by Parabolic Flights. Biomedicines, 2022, 10, 138.	3.2	2
3	Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 2022, 19, 266-278.	3.1	6
4	Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nature Communications, 2022, 13, 1690.	12.8	2
5	Enhanced pro-apoptosis gene signature following the activation of TAp63 $\hat{l}\pm$ in oocytes upon \hat{l}^3 irradiation. Cell Death and Disease, 2022, 13, 204.	6.3	5
6	The Two TpsB-Like Proteins in Anabaena sp. Strain PCC 7120 Are Involved in Secretion of Selected Substrates. Journal of Bacteriology, 2021, 203, .	2.2	2
7	Insertion of plastidic \hat{l}^2 -barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. Plant Cell, 2021, 33, 1657-1681.	6.6	15
8	Identification and Regulation of Tomato Serine/Arginine-Rich Proteins Under High Temperatures. Frontiers in Plant Science, 2021, 12, 645689.	3.6	11
9	Comparative Phenotypic Analysis of <i>Anabaena</i> sp. PCC 7120 Mutants of Porinlike Genes. Journal of Microbiology and Biotechnology, 2021, 31, 645-658.	2.1	16
10	A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium <i>Anabaena</i>	4.1	5
11	The Arabidopsis 2′-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. Frontiers in Plant Science, 2021, 12, 684626.	3.6	10
12	Dynamics and thermal sensitivity of rRNA maturation paths in plants. Journal of Experimental Botany, 2021, , .	4.8	7
13	Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium <i>Anabaena</i> sp. PCC 7120. MSphere, 2021, 6, e0021421.	2.9	2
14	Natural variation in HsfA2 preâ€mRNA splicing is associated with changes in thermotolerance during tomato domestication. New Phytologist, 2020, 225, 1297-1310.	7.3	55
15	miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Scientific Reports, 2020, 10, 10694.	3.3	22
16	LptC from Anabaena sp. PCC 7120: Expression, purification and crystallization. Protein Expression and Purification, 2020, 175, 105689.	1.3	0
17	The Existence and Localization of Nuclear snoRNAs in Arabidopsis thaliana Revisited. Plants, 2020, 9, 1016.	3.5	14
18	Purification and Preliminary X-Ray Crystallographic Analysis of the Peptidyl-Prolyl cis–trans Isomerase Alr5059 from Anabaena sp. PCC 7120. Crystallography Reports, 2020, 65, 1226-1230.	0.6	1

#	Article	IF	Citations
19	Reprogramming of Tomato Leaf Metabolome by the Activity of Heat Stress Transcription Factor HsfB1. Frontiers in Plant Science, 2020, 11, 610599.	3.6	19
20	Structural and Functional Heat Stress Responses of Chloroplasts of Arabidopsis thaliana. Genes, 2020, 11, 650.	2.4	14
21	Iron homeostasis of cyanobacteria: advancements in siderophores and metal transporters. , 2020, , 85-117.		10
22	Transcriptional Basis for Differential Thermosensitivity of Seedlings of Various Tomato Genotypes. Genes, 2020, 11, 655.	2.4	5
23	Toc75â€V/OEP80 is processed during translocation into chloroplasts, and the membraneâ€embedded form exposes its POTRA domain to the intermembrane space. FEBS Open Bio, 2020, 10, 444-454.	2.3	14
24	Membrane Extracts from Plant Tissues. Methods in Molecular Biology, 2020, 2127, 81-92.	0.9	0
25	Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research, 2019, 47, 8649-8661.	14.5	32
26	Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes, 2019, 10, 516.	2.4	18
27	Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene, 2019, 714, 143985.	2.2	20
28	HEATSTER: A Database and Web Server for Identification and Classification of Heat Stress Transcription Factors in Plants. Bioinformatics and Biology Insights, 2019, 13, 117793221882136.	2.0	26
29	Microgravity research in plants. EMBO Reports, 2019, 20, e48541.	4.5	22
30	The intracellular distribution of the components of the GET system in vascular plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1650-1662.	4.1	8
31	Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. Plant Cell Reports, 2019, 38, 937-949.	5.6	2
32	Metalloproteins in the Biology of Heterocysts. Life, 2019, 9, 32.	2.4	23
33	Tic22 from Anabaena sp. PCC 7120 with holdase function involved in outer membrane protein biogenesis shuttles between plasma membrane and Omp85. Molecular Microbiology, 2019, 111, 1302-1316.	2.5	5
34	The repressor and coâ€activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant, Cell and Environment, 2019, 42, 874-890.	5.7	63
35	Plant-specific ribosome biogenesis factors in <i>Arabidopsis thaliana</i> with essential function in rRNA processing. Nucleic Acids Research, 2019, 47, 1880-1895.	14.5	47
36	The signal distinguishing between targeting of outer membrane \hat{l}^2 -barrel protein to plastids and mitochondria in plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 663-672.	4.1	11

#	Article	IF	Citations
37	Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 627-636.	2.3	14
38	Late ribosomal protein localization in Arabidopsis thaliana differs to that in Saccharomyces cerevisiae. FEBS Open Bio, 2018, 8, 1437-1444.	2.3	5
39	The outer membrane Omp85â€like protein P39 influences metabolic homeostasis in mature <i>Arabidopsis thaliana</i> . Plant Biology, 2018, 20, 825-833.	3.8	3
40	Alternative splicing in tomato pollen in response to heat stress. DNA Research, 2017, 24, dsw051.	3.4	55
41	The plastid outer membrane localized LPTD1 is important for glycerolipid remodelling under phosphate starvation. Plant, Cell and Environment, 2017, 40, 1643-1657.	5.7	13
42	<scp>DNA</scp> â€binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. Plant Journal, 2017, 89, 31-44.	5.7	12
43	Chloroplast outer envelope protein P39 in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> belongs to the Omp85 protein family. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1391-1401.	2.6	8
44	Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana. Frontiers in Plant Science, 2017, 8, 1815.	3.6	26
45	Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets. Frontiers in Genetics, 2017, 8, 85.	2.3	10
46	Protocol for Enrichment of the Membrane Proteome of Mature Tomato Pollen. Bio-protocol, 2017, 7, e2315.	0.4	3
47	Unfolded protein response in pollen development and heat stress tolerance. Plant Reproduction, 2016, 29, 81-91.	2.2	70
48	Relative Orientation of POTRA Domains from Cyanobacterial Omp85 Studied by Pulsed EPR Spectroscopy. Biophysical Journal, 2016, 110, 2195-2206.	0.5	21
49	HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues. Plant Physiology, 2016, 170, 2461-2477.	4.8	148
50	50Âyears of amino acid hydrophobicity scales: revisiting the capacity for peptide classification. Biological Research, 2016, 49, 31.	3.4	77
51	Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nature Communications, 2016, 7, 13021.	12.8	74
52	Characterization of the targeting signal in mitochondrial \hat{l}^2 -barrel proteins. Nature Communications, 2016, 7, 12036.	12.8	80
53	Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on <i>Solanum lycopersicum</i> . Bioinformatics and Biology Insights, 2016, 10, BBI.S38425.	2.0	21
54	Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. Plant Molecular Biology, 2016, 92, 57-69.	3.9	15

#	Article	IF	Citations
55	Pollen as a target of environmental changes. Plant Reproduction, 2016, 29, 1-2.	2.2	10
56	Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways. RNA Biology, 2016 , 13 , 320 - 330 .	3.1	39
57	Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. Planta, 2016, 243, 733-747.	3.2	10
58	Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in <i>Arabidopsis thaliana</i> . RNA Biology, 2016, 13, 441-454.	3.1	48
59	Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. Plant Reproduction, 2016, 29, 53-65.	2.2	11
60	The membrane proteome of male gametophyte in Solanum lycopersicum. Journal of Proteomics, 2016, 131, 48-60.	2.4	25
61	Identification of novel small ncRNAs in pollen of tomato. BMC Genomics, 2015, 16, 714.	2.8	27
62	Identification and Expression Analysis of Ribosome Biogenesis Factor Co-orthologs in <i>Solanum lycopersicum</i> . Bioinformatics and Biology Insights, 2015, 9, BBI.S20751.	2.0	62
63	Multiple modes of iron uptake by the filamentous, siderophoreâ€producing cyanobacterium, <scp><i>A</i></scp> <i>nabaena</i> <scp>PCC</scp> 7120. Molecular Microbiology, 2015, 97, 577-588.	2.5	43
64	Dynamics of the Glycophorin A Dimer in Membranes of Native-Like Composition Uncovered by Coarse-Grained Molecular Dynamics Simulations. PLoS ONE, 2015, 10, e0133999.	2.5	19
65	Functional properties of LptA and LptD in Anabaena sp. PCC 7120. Biological Chemistry, 2015, 396, 1151-1162.	2.5	5
66	Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant, Cell and Environment, 2015, 38, 1881-1895.	5.7	181
67	The Peptidoglycan-Binding Protein SjcF1 Influences Septal Junction Function and Channel Formation in the Filamentous Cyanobacterium <i>Anabaena</i> . MBio, 2015, 6, e00376.	4.1	33
68	The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Research, 2015, 43, 553-564.	14.5	64
69	Hsp90 Is Involved in the Regulation of Cytosolic Precursor Protein Abundance in Tomato. Molecular Plant, 2015, 8, 228-241.	8.3	21
70	Chaperone network composition in <scp><i>S</i></scp> <i>olanum lycopersicum</i> explored by transcriptome profiling and microarray metaâ€analysis. Plant, Cell and Environment, 2015, 38, 693-709.	5.7	71
71	atBRX1-1 and atBRX1-2 are involved in an alternative rRNA processing pathway in <i>Arabidopsis thaliana</i> . Rna, 2015, 21, 415-425.	3.5	68
72	The composition of the global and feature specific cyanobacterial core-genomes. Frontiers in Microbiology, 2015, 6, 219.	3.5	38

#	Article	lF	CITATIONS
73	The Omp85-type outer membrane protein p36 of Arabidopsis thaliana evolved by recent gene duplication. Journal of Plant Research, 2015, 128, 317-325.	2.4	6
74	Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 2015, 20, 729-740.	8.8	126
75	Secretome analysis of <scp><i>A</i></scp> <i>nabaena</i> sp. <scp>PCC</scp> 7120 and the involvement of the <scp>TolC</scp> â€homologue <scp>HgdD</scp> in protein secretion. Environmental Microbiology, 2015, 17, 767-780.	3.8	24
76	The Complexity of Vesicle Transport Factors in Plants Examined by Orthology Search. PLoS ONE, 2014, 9, e97745.	2.5	34
77	The Influence of Fatty Acids on the GpA Dimer Interface by Coarse-Grained Molecular Dynamics Simulation. International Journal of Molecular Sciences, 2014, 15, 14247-14268.	4.1	4
78	The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Research, 2014, 42, 1509-1523.	14.5	87
79	A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. Rna, 2014, 20, 1173-1182.	3.5	45
80	Nucleotides and Substrates Trigger the Dynamics of the Toc34 GTPase Homodimer Involved in Chloroplast Preprotein Translocation. Structure, 2014, 22, 526-538.	3.3	20
81	Cell Envelope Components Influencing Filament Length in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2014, 196, 4026-4035.	2.2	22
82	Protein Targeting and Transport as a Necessary Consequence of Increased Cellular Complexity. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016055-a016055.	5.5	15
83	The 60S associated ribosome biogenesis factor <scp>LSG</scp> 1â€2 is required for 40S maturation in <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 80, 1043-1056.	5.7	43
84	Evolution of the Protein Translocons of the Chloroplast Envelope. , 2014, , 81-110.		5
85	Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. Molecular Plant, 2014, , .	8.3	0
86	The protein translocation systems in plants $\hat{a}\in$ composition and variability on the example of Solanum lycopersicum. BMC Genomics, 2013, 14, 189.	2.8	23
87	The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability. BioMetals, 2013, 26, 549-560.	4.1	15
88	Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA–protein interactions during small ribosomal subunit biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15253-15258.	7.1	40
89	Iron in Cyanobacteria. Advances in Botanical Research, 2013, , 57-105.	1.1	68
90	Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3314-3325.	4.1	68

#	Article	IF	Citations
91	<scp>T</scp> oc33 and <scp>T</scp> oc64â€ <scp>III</scp> cooperate in precursor protein import into the chloroplasts of <i><scp>A</scp>rabidopsis thaliana</i> lant, Cell and Environment, 2013, 36, 970-983.	5.7	30
92	Protein targeting to subcellular organelles via mRNA localization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 260-273.	4.1	101
93	What comes around goes around: Protein import and quality control in mitochondria and plastids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 243-244.	4.1	0
94	The folding capacity of the mature domain of the dual-targeted plant tRNA nucleotidyltransferase influences organelle selection. Biochemical Journal, 2013, 453, 401-412.	3.7	12
95	Defining the Core Proteome of the Chloroplast Envelope Membranes. Frontiers in Plant Science, 2013, 4, 11.	3.6	75
96	Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science, 2013, 4, 315.	3.6	323
97	The Outer Membrane TolC-like Channel HgdD Is Part of Tripartite Resistance-Nodulation-Cell Division (RND) Efflux Systems Conferring Multiple-drug Resistance in the Cyanobacterium Anabaena sp. PCC7120. Journal of Biological Chemistry, 2013, 288, 31192-31205.	3.4	22
98	In Vivo Function of Tic22, a Protein Import Component of the Intermembrane Space of Chloroplasts. Molecular Plant, 2013, 6, 817-829.	8.3	30
99	MALDI analysis of proteins after extraction from dissolvable ethylene glycol diacrylate crossâ€inked polyacrylamide gels. Electrophoresis, 2013, 34, 2484-2494.	2.4	6
100	self-assembling GFP: A Versatile Tool for Plant (Membrane) Protein Analyses. Methods in Molecular Biology, 2013, 1033, 131-144.	0.9	5
101	40S Ribosome Biogenesis Co-Factors Are Essential for Gametophyte and Embryo Development. PLoS ONE, 2013, 8, e54084.	2.5	74
102	Identification of two voltage-dependent anion channel-like protein sequences conserved in Kinetoplastida. Biology Letters, 2012, 8, 446-449.	2.3	17
103	Structure and Conservation of the Periplasmic Targeting Factor Tic22 Protein from Plants and Cyanobacteria. Journal of Biological Chemistry, 2012, 287, 24164-24173.	3.4	33
104	Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Research, 2012, 40, 3259-3274.	14.5	64
105	The TolC-like Protein HgdD of the Cyanobacterium Anabaena sp. PCC 7120 Is Involved in Secondary Metabolite Export and Antibiotic Resistance. Journal of Biological Chemistry, 2012, 287, 41126-41138.	3.4	34
106	Chloroplast \hat{I}^2 -Barrel Proteins Are Assembled into the Mitochondrial Outer Membrane in a Process That Depends on the TOM and TOB Complexes. Journal of Biological Chemistry, 2012, 287, 27467-27479.	3.4	30
107	The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling. Plant Cell, 2012, 24, 2528-2545.	6.6	57
108	Recycling and Tinkering: The Evolution of Protein Transport to and into Endosymbiotically Derived Organelles., 2012,, 175-216.		1

#	Article	IF	Citations
109	Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. Biomolecular NMR Assignments, 2012, 6, 47-50.	0.8	4
110	Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1033-1040.	4.1	4
111	The components of the putative iron transport system in the cyanobacterium <i>Anabaena</i> sp. PCC 7120. Environmental Microbiology, 2012, 14, 1655-1670.	3.8	44
112	DNA Damage in Oocytes Induces a Switch of the Quality Control Factor TAp63 \hat{l} ± from Dimer to Tetramer. Cell, 2011, 144, 566-576.	28.9	117
113	The functional domains of the chloroplast unusual positioning protein 1. Plant Science, 2011, 180, 650-654.	3.6	16
114	Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33. Biochemical Journal, 2011, 436, 313-319.	3.7	25
115	Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cellular Microbiology, 2011, 13, 1744-1754.	2.1	81
116	Transitions of gene expression induced by shortâ€ŧerm blue light. Plant Biology, 2011, 13, 349-361.	3.8	23
117	A highâ€definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant Journal, 2011, 67, 181-194.	5.7	38
118	Common ground for protein translocation: access control for mitochondria and chloroplasts. Nature Reviews Molecular Cell Biology, 2011, 12, 48-59.	37.0	223
119	Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1647-1657.	1.0	31
120	The localization of Tic20 proteins in Arabidopsis thaliana is not restricted to the inner envelope membrane of chloroplasts. Plant Molecular Biology, 2011, 77, 381-390.	3.9	32
121	Crosstalk between Hsp90 and Hsp70 Chaperones and Heat Stress Transcription Factors in Tomato. Plant Cell, 2011, 23, 741-755.	6.6	294
122	Omp85 in eukaryotic systems: one protein family with distinct functions. Biological Chemistry, 2011, 392, 21-7.	2.5	31
123	Highlight: Membrane transport in light of structure, function, and evolution. Biological Chemistry, 2011, 392, 3.	2.5	0
124	Chloroplast Omp85 proteins change orientation during evolution. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13841-13846.	7.1	80
125	Protein-Induced Modulation of Chloroplast Membrane Morphology. Frontiers in Plant Science, 2011, 2, 118.	3.6	38
126	Studying Chloroplast Protein Interactions In Vitro: An Overview of the Available Methods. Methods in Molecular Biology, 2011, 775, 67-90.	0.9	0

#	Article	IF	CITATIONS
127	The evolution of protein targeting and translocation systems. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1115-1130.	4.1	38
128	Filling the Gap, Evolutionarily Conserved Omp85 in Plastids of Chromalveolates. Journal of Biological Chemistry, 2010, 285, 6848-6856.	3.4	73
129	Conserved Properties of Polypeptide Transport-associated (POTRA) Domains Derived from Cyanobacterial Omp85. Journal of Biological Chemistry, 2010, 285, 18016-18024.	3.4	53
130	On the Impact of Precursor Unfolding during Protein Import into Chloroplasts. Molecular Plant, 2010, 3, 499-508.	8.3	29
131	Outer Membrane Proteins. , 2010, , 175-228.		11
132	Chloroplast Import Signals: The Length Requirement for Translocation In Vitro and In Vivo. Journal of Molecular Biology, 2010, 402, 510-523.	4.2	73
133	The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2131-2140.	2.6	61
134	The properties of the outer membrane localized Lipid A transporter LptD. Journal of Physics Condensed Matter, 2010, 22, 454124.	1.8	22
135	Molecular interactions within the plant TOC complex. Biological Chemistry, 2009, 390, 739-744.	2.5	14
136	<i>Lotus japonicus</i> CASTOR and POLLUX Are Ion Channels Essential for Perinuclear Calcium Spiking in Legume Root Endosymbiosis. Plant Cell, 2009, 20, 3467-3479.	6.6	208
137	The cell wall in heterocyst formation by <i>Anabaena</i> sp. PCC 7120. Journal of Basic Microbiology, 2009, 49, 5-24.	3.3	89
138	Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria. Journal of Molecular Modeling, 2009, 15, 971-982.	1.8	29
139	TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biology, 2009, 7, 68.	3.8	61
140	Tethering of ferredoxin:NADP ⁺ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. Plant Journal, 2009, 60, 783-794.	5.7	89
141	The outer membrane of a heterocystâ€forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Molecular Microbiology, 2009, 74, 58-70.	2.5	51
142	Prp43 Bound at Different Sites on the Pre-rRNA Performs Distinct Functions in Ribosome Synthesis. Molecular Cell, 2009, 36, 583-592.	9.7	152
143	The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta, 2008, 227, 1151-1159.	3.2	98
144	From Biological towards Artificial Molecular Motors. ChemPhysChem, 2008, 9, 1503-1509.	2.1	36

#	Article	IF	CITATIONS
145	The GTPase Cycle of the Chloroplast Import ReceptorsÂToc33/Toc34: Implications from MonomericÂand Dimeric Structures. Structure, 2008, 16, 585-596.	3.3	52
146	Policing Tic â€~n' Toc, the doorway to chloroplasts. Trends in Cell Biology, 2008, 18, 19-27.	7.9	44
147	Phosphorylation regulates the assembly of chloroplast import machinery. Journal of Experimental Botany, 2008, 59, 2309-2316.	4.8	26
148	Moving the green. Plant Signaling and Behavior, 2008, 3, 488-489.	2.4	7
149	On the Significance of Toc-GTPase Homodimers. Journal of Biological Chemistry, 2008, 283, 23104-23112.	3.4	26
150	Alr0397 Is an Outer Membrane Transporter for the Siderophore Schizokinen in <i>Anabaena</i> Strain PCC 7120. Journal of Bacteriology, 2008, 190, 7500-7507.	2.2	77
151	pH Sensitivity of the GTPase Toc33 as a Regulatory Circuit for Protein Translocation into Chloroplasts. Plant and Cell Physiology, 2008, 49, 1917-1921.	3.1	5
152	Movement of Endosymbiotic Organelles. Current Protein and Peptide Science, 2007, 8, 426-438.	1.4	13
153	The Tetratricopeptide Repeats of Receptors Involved in Protein Translocation across Membranes. Molecular Biology and Evolution, 2007, 24, 2763-2774.	8.9	56
154	Dual targeting of the tRNA nucleotidyltransferase in plants: not just the signal. Journal of Experimental Botany, 2007, 58, 4083-4093.	4.8	35
155	Functional and Phylogenetic Properties of the Pore-forming \hat{l}^2 -Barrel Transporters of the Omp85 Family. Journal of Biological Chemistry, 2007, 282, 1882-1890.	3.4	74
156	A TolC-Like Protein Is Required for Heterocyst Development in <i>Anabaena</i> sp. Strain PCC 7120. Journal of Bacteriology, 2007, 189, 7887-7895.	2.2	51
157	Toc64 - A Preprotein-receptor at the Outer Membrane with Bipartide Function. Journal of Molecular Biology, 2007, 367, 1330-1346.	4.2	82
158	Phosphoâ€mimicry mutant of atToc33 affects early development of <i>Arabidopsis thaliana</i> Letters, 2007, 581, 5945-5951.	2.8	25
159	The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biological Chemistry, 2007, 388, 823-9.	2.5	32
160	A plastid-localized glycogen synthase kinase $\hat{a} \in f3$ modulates stress tolerance and carbohydrate metabolism. Plant Journal, 2007, 49, 1076-1090.	5.7	70
161	The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evolutionary Biology, 2007, 7, 236.	3.2	36
162	The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO Journal, 2006, 25, 1836-1847.	7.8	157

#	Article	IF	CITATIONS
163	Chloroplast Protein Import: Reverse Genetic Approaches. Current Genomics, 2006, 7, 235-244.	1.6	9
164	Molecular Properties of Oep21, an ATP-regulated Anion-selective Solute Channel from the Outer Chloroplast Membrane. Journal of Biological Chemistry, 2006, 281, 12020-12029.	3.4	31
165	Determination of liposome size: A tool for protein reconstitution. Analytical Biochemistry, 2005, 347, 24-33.	2.4	10
166	Let's Talk aboutâ€"Chloroplast Import. Plant Biology, 2005, 7, 1-14.	3.8	29
167	Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Reports, 2005, 6, 1023-1027.	4.5	124
168	Conserved pore-forming regions in polypeptide-transporting proteins. FEBS Journal, 2005, 272, 1367-1378.	4.7	74
169	Prediction of beta-barrel membrane proteins by searching for restricted domains. BMC Bioinformatics, 2005, 6, 254.	2.6	17
170	The Evolutionarily Related \hat{I}^2 -Barrel Polypeptide Transporters from Pisum sativum and Nostoc PCC7120 Contain Two Distinct Functional Domains. Journal of Biological Chemistry, 2005, 280, 28281-28289.	3.4	83
171	Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature, 2005, 437, 1179-1182.	27.8	420
172	Analysis of expression patterns of translocon subunits of chloroplasts and mitochondria. Plant Science, 2005, 168, 1533-1539.	3.6	7
173	Proteomic Analysis of the Outer Membrane of <i>Anabaena </i> sp. Strain PCC 7120. Journal of Proteome Research, 2005, 4, 1330-1338.	3.7	54
174	Toc12, a Novel Subunit of the Intermembrane Space Preprotein Translocon of Chloroplasts. Molecular Biology of the Cell, 2004, 15, 5130-5144.	2.1	93
175	Hiding behind Hydrophobicity. Journal of Biological Chemistry, 2004, 279, 50915-50922.	3.4	91
176	The Protein Translocon of the Plastid Envelopes. Journal of Biological Chemistry, 2004, 279, 21401-21405.	3.4	70
177	Protein import into chloroplasts. Nature Reviews Molecular Cell Biology, 2004, 5, 198-208.	37.0	368
178	Preprotein recognition by the Toc complex. EMBO Journal, 2004, 23, 520-530.	7.8	120
179	A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Letters, 2004, 557, 109-114.	2.8	126
180	Protein Targeting and Import. Advances in Photosynthesis and Respiration, 2004, , 31-54.	1.0	3

#	Article	IF	Citations
181	Prediction of the plant beta-barrel proteome: A case study of the chloroplast outer envelope. Protein Science, 2003, 12, 748-759.	7.6	110
182	Two Toc34 Homologues with Different Propertiesâ€. Biochemistry, 2003, 42, 5906-5916.	2.5	99
183	A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4604-4609.	7.1	113
184	Characterization of the translocon of the outer envelope of chloroplasts. Journal of Cell Biology, 2003, 160, 541-551.	5.2	195
185	Membrane insertion of the chloroplast outer envelope protein, Toc34:constrains for insertion and topology. Journal of Cell Science, 2003, 116, 837-846.	2.0	42
186	The Chloroplast Import Receptor Toc34 Functions as Preprotein-Regulated GTPase. Biological Chemistry, 2002, 383, 1875-83.	2.5	68
187	Structural and Guanosine Triphosphate/Diphosphate Requirements for Transit Peptide Recognition by the Cytosolic Domain of the Chloroplast Outer Envelope Receptor, Toc34â€. Biochemistry, 2002, 41, 1934-1946.	2.5	72
188	Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Molecular Biology, 2002, 50, 177-185.	3.9	25
189	A Toc75â€ike protein import channel is abundant in chloroplasts. EMBO Reports, 2002, 3, 557-562.	4.5	110
190	Without a little help from â€~my' friends: direct insertion of proteins into chloroplast membranes?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 22-33.	4.1	72
191	Lipid Composition of Outer Leaflet of Chloroplast Outer Envelope Determines Topology of OEP7. Molecular Biology of the Cell, 2001, 12, 4090-4102.	2.1	76
192	Signals and receptors-the translocation machinery on the mitochondrial surface., 2000, 32, 55-66.		12
193	Cloning and characterization of a 35-kDa mouse mitochondrial outer membrane protein MOM35 with high homology to Tom40. Journal of Bioenergetics and Biomembranes, 2000, 32, 111-121.	2.3	4
194	Travelling of proteins through membranes: translocation into chloroplasts. Planta, 2000, 211, 449-456.	3.2	84
195	Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4973-4978.	7.1	127
196	Topology Studies of the Chloroplast Protein Import Channel Toc75. Biological Chemistry, 2000, 381, 687-693.	2.5	64
197	The central matrix loop drives import of uncoupling protein 1 into mitochondria. Journal of Cell Science, 2000, 113 , 2267 - 2272 .	2.0	23
198	The central matrix loop drives import of uncoupling protein 1 into mitochondria. Journal of Cell Science, 2000, 113 (Pt 12), 2267-72.	2.0	13

#	Article	IF	CITATIONS
199	Direct Membrane Insertion of Voltage-dependent Anion-selective Channel Protein Catalyzed by Mitochondrial Tom20. Journal of Cell Biology, 1999, 145, 973-978.	5.2	59
200	Structure determination and prediction: A study on human Tom20. Computational and Theoretical Chemistry, 1999, 468, 127-134.	1.5	2
201	Interactions of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS)-Related Protein with a Novel Solid-Supported Lipid Membrane System (TRANSIL). Analytical Biochemistry, 1999, 268, 343-353.	2.4	24
202	Positively charged residues, the helical conformation and the structural flexibility of the leader sequence of pALDH are important for recognition by hTom20. FEBS Letters, 1999, 461, 9-12.	2.8	18
203	Expression, Purification, and in Vitro Characterization of the Human Outer Mitochondrial Membrane Receptor Human Translocase of the Outer Mitochondrial Membrane 20. Archives of Biochemistry and Biophysics, 1999, 367, 95-103.	3.0	4
204	Functional and Structural Properties of the Mitochondrial Outer Membrane Receptor Tom20â€. Biochemistry, 1998, 37, 13043-13051.	2.5	42
205	Characterization of the N-Terminal Targeting Signal Binding Domain of the Mitochondrial Outer Membrane Receptor, Tom20â€. Biochemistry, 1998, 37, 13052-13058.	2.5	22
206	Interactions of the Human Mitochondrial Protein Import Receptor, hTom20, with Precursor Proteins in Vitro Reveal Pleiotropic Specificities and Different Receptor Domain Requirements. Journal of Biological Chemistry, 1997, 272, 17784-17789.	3.4	51
207	Human mitochondrial import receptor, Tom20p. Use of glutathione to reveal specific interactions between Tom20-glutathione S -transferase and mitochondrial precursor proteins. FEBS Letters, 1997, 404, 314-318.	2.8	30
208	Cross-talk between calmodulin and protein kinase C., 1997,, 127-150.		2
209	Myristoylation Does Not Modulate the Properties of MARCKS-related Protein (MRP) in Solution. Journal of Biological Chemistry, 1996, 271, 26794-26802.	3.4	39
210	Polypeptide transporting \hat{l}^2 -barrel type channels contain two distinct functional domains. , 0, 2005, .		1