Patrick S Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2642116/publications.pdf

Version: 2024-02-01

14	1,272	12	14
papers	citations	h-index	g-index
17	17	17	1861 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Two Distinct Mechanisms of Inhibition of LpxA Acyltransferase Essential for Lipopolysaccharide Biosynthesis. Journal of the American Chemical Society, 2020, 142, 4445-4455.	13.7	24
2	Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications. ACS Chemical Biology, 2019, 14, 2430-2440.	3.4	213
3	Mutations Reducing <i>In Vitro</i> Susceptibility to Novel LpxC Inhibitors in <i>Pseudomonas aeruginosa</i> and Interplay of Efflux and Nonefflux Mechanisms. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	4
4	Application of Virtual Screening to the Identification of New LpxC Inhibitor Chemotypes, Oxazolidinone and Isoxazoline. Journal of Medicinal Chemistry, 2018, 61, 9360-9370.	6.4	21
5	Tetrahydropyrrolo-diazepenones as inhibitors of ERK2 kinase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3788-3792.	2.2	25
6	Ligand efficient tetrahydro-pyrazolopyridines as inhibitors of ERK2 kinase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3626-3629.	2.2	14
7	Promiscuity and the Conformational Rearrangement of Drugâ€Like Molecules: Insight from the Protein Data Bank. ChemMedChem, 2015, 10, 238-244.	3.2	9
8	SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity <i>in vivo</i> . Molecular Cancer Therapeutics, 2009, 8, 3181-3190.	4.1	123
9	Energetic Preferences for $\hat{l}^{\pm},\hat{l}^{2}$ versus \hat{l}^{2},\hat{l}^{3} Unsaturation. Journal of Organic Chemistry, 2004, 69, 5448-5453.	3.2	15
10	A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmarking of Computational Methods:Â The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barriers, Reaction Energetics, and Transition State Geometries. Journal of Physical Chemistry A, 2003, 107, 11445-11459.	2.5	342
11	Origins of Inward Torquoselectivity by Silyl Groups and Other If-Acceptors in Electrocyclic Reactions of Cyclobutenes. Journal of the American Chemical Society, 2003, 125, 5072-5079.	13.7	78
12	Altering the Allowed/Forbidden Gap in Cyclobutene Electrocyclic Reactions:Â Experimental and Theoretical Evaluations of the Effect of Planarity Constraints. Journal of the American Chemical Society, 2003, 125, 5839-5848.	13.7	48
13	The Origin of endo Stereoselectivity in the Hetero-Diels–Alder Reactions of Aldehydes with ortho-Xylylenes: CH–π, π–Ĩ€, and Steric Effects on Stereoselectivity. Chemistry - A European Journal, 2002, 8, 3423.	3.3	50
14	Polyacene and Cyclacene Geometries and Electronic Structures:Â Bond Equalization, Vanishing Band Gaps, and Triplet Ground States Contrast with Polyacetylene. Journal of Organic Chemistry, 2001, 66, 5517-5521.	3.2	306