Kenneth D Irvine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2641251/publications.pdf

Version: 2024-02-01

100 papers 12,988 citations

18436 62 h-index 96 g-index

104 all docs

104 docs citations

104 times ranked 9650 citing authors

#	Article	IF	CITATIONS
1	The wing imaginal disc. Genetics, 2022, 220, .	1.2	34
2	TRIP6 is required for tension at adherens junctions. Journal of Cell Science, 2021, 134, .	1.2	8
3	E2 and gamma distributions in polygonal networks. Physical Review Research, 2021, 3, .	1.3	4
4	Integration of Hippo-YAP Signaling with Metabolism. Developmental Cell, 2020, 54, 256-267.	3.1	84
5	Dchs1-Fat4 regulation of osteogenic differentiation in mouse. Development (Cambridge), 2019, 146, .	1.2	17
6	Recruitment of Jub by \hat{l}_{\pm} -catenin promotes Yki activity and <i>Drosophila</i> wing growth. Journal of Cell Science, 2019, 132, .	1.2	39
7	Organization and function of tension-dependent complexes at adherens junctions. Journal of Cell Science, 2019, 132, .	1.2	40
8	Oriented Cell Divisions Are Not Required for Drosophila Wing Shape. Current Biology, 2019, 29, 856-864.e3.	1.8	24
9	Early girl is a novel component of the Fat signaling pathway. PLoS Genetics, 2019, 15, e1007955.	1.5	8
10	Localization of Hippo Signaling Components in Drosophila by Fluorescence and Immunofluorescence. Methods in Molecular Biology, 2019, 1893, 61-73.	0.4	6
11	Tension-dependent regulation of mammalian Hippo signaling through LIMD1. Journal of Cell Science, 2018, 131, .	1.2	82
12	Rapping about Mechanotransduction. Developmental Cell, 2018, 46, 678-679.	3.1	4
13	The dynamics of hippo signaling during <i>Drosophila</i> wing development. Development (Cambridge), 2018, 145, .	1.2	45
14	The Hippo Signaling Network and Its Biological Functions. Annual Review of Genetics, 2018, 52, 65-87.	3.2	316
15	Mechanical control of growth: ideas, facts and challenges. Development (Cambridge), 2017, 144, 4238-4248.	1.2	92
16	Taking Stock of the <i>Drosophila</i> Research Ecosystem. Genetics, 2017, 206, 1227-1236.	1.2	41
17	Role and regulation of Yap in KrasG12D-induced lung cancer. Oncotarget, 2017, 8, 110877-110889.	0.8	14
18	Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development (Cambridge), 2016, 143, 2367-2375.	1.2	21

#	Article	IF	CITATIONS
19	Vamana Couples Fat Signaling to the Hippo Pathway. Developmental Cell, 2016, 39, 254-266.	3.1	22
20	Dchs1 \hat{a} e"Fat4 regulation of polarized cell behaviours during skeletal morphogenesis. Nature Communications, 2016, 7, 11469.	5.8	34
21	Differential growth triggers mechanical feedback that elevates Hippo signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6974-E6983.	3.3	124
22	Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network. Trends in Cell Biology, 2016, 26, 694-704.	3.6	123
23	An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2. Oncotarget, 2016, 7, 24063-24075.	0.8	42
24	Control of Organ Growth by Patterning and Hippo Signaling in (i>Drosophila (i). Cold Spring Harbor Perspectives in Biology, 2015, 7, a019224.	2.3	100
25	Mutations in DCHS1 cause mitral valve prolapse. Nature, 2015, 525, 109-113.	13.7	150
26	A Fat4-Dchs1 signal between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development (Cambridge), 2015, 142, 2574-85.	1.2	61
27	Localization of Hippo signalling complexes and Warts activation in vivo. Nature Communications, 2015, 6, 8402.	5.8	79
28	Coordination of planar cell polarity pathways through Spiny-legs. ELife, 2015, 4, .	2.8	35
29	Control of Growth During Regeneration. Current Topics in Developmental Biology, 2014, 108, 95-120.	1.0	61
30	Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology, 2014, 24, 2012-2017.	1.8	195
31	Cytoskeletal Tension Inhibits Hippo Signaling through an Ajuba-Warts Complex. Cell, 2014, 158, 143-156.	13.5	306
32	Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex. Cell Reports, 2014, 8, 449-459.	2.9	66
33	Regulation of Neuronal Migration by Dchs1-Fat4 Planar Cell Polarity. Current Biology, 2014, 24, 1620-1627.	1.8	89
34	Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes. Cell Reports, 2013, 3, 309-318.	2.9	126
35	Signal transduction by the Fat cytoplasmic domain. Development (Cambridge), 2013, 140, 831-842.	1.2	48
36	Regulation of Hippo Signaling by EGFR-MAPK Signaling through Ajuba Family Proteins. Developmental Cell, 2013, 24, 459-471.	3.1	242

3

#	Article	IF	CITATIONS
37	Ajuba Family Proteins Link JNK to Hippo Signaling. Science Signaling, 2013, 6, ra81.	1.6	136
38	Collective polarization model for gradient sensing via Dachsous-Fat intercellular signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20420-20425.	3.3	31
39	Signal transduction by the Fat cytoplasmic domain. Journal of Cell Science, 2013, 126, e1-e1.	1.2	O
40	Hippo Signaling Goes Long Range. Cell, 2012, 150, 669-670.	13.5	25
41	Propagation of Dachsous-Fat Planar Cell Polarity. Current Biology, 2012, 22, 1302-1308.	1.8	98
42	Integration of intercellular signaling through the Hippo pathway. Seminars in Cell and Developmental Biology, 2012, 23, 812-817.	2.3	78
43	The Raine Syndrome Protein FAM20C Is a Golgi Kinase That Phosphorylates Bio-Mineralization Proteins. PLoS ONE, 2012, 7, e42988.	1.1	141
44	Hippo signaling in <i>Drosophila</i> : Recent advances and insights. Developmental Dynamics, 2012, 241, 3-15.	0.8	219
45	<i>Drosophila</i> as a model for understanding development and disease. Developmental Dynamics, 2012, 241, 1-2.	0.8	49
46	Cooperative Regulation of Growth by Yorkie and Mad through bantam. Developmental Cell, 2011, 20, 109-122.	3.1	137
47	Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Developmental Biology, 2011, 350, 139-151.	0.9	205
48	Characterization of a <i>Dchs1</i> mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development (Cambridge), 2011, 138, 947-957.	1.2	172
49	Regulation of <i>Drosophila </i> glial cell proliferation by Merlin-Hippo signaling. Development (Cambridge), 2011, 138, 5201-5212.	1.2	59
50	Zyxin Links Fat Signaling to the Hippo Pathway. PLoS Biology, 2011, 9, e1000624.	2.6	145
51	Yorkie: the final destination of Hippo signaling. Trends in Cell Biology, 2010, 20, 410-417.	3.6	136
52	Modulation of Fat:Dachsous Binding by the Cadherin Domain Kinase Four-Jointed. Current Biology, 2010, 20, 811-817.	1.8	132
53	Warts and Yorkie Mediate Intestinal Regeneration by Influencing Stem Cell Proliferation. Current Biology, 2010, 20, 1580-1587.	1.8	241
54	Influence of Fat-Hippo and Notch signaling on the proliferation and differentiation of <i>Drosophila</i> optic neuroepithelia. Development (Cambridge), 2010, 137, 2397-2408.	1.2	137

#	Article	IF	CITATIONS
55	Processing and phosphorylation of the Fat receptor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11989-11994.	3.3	89
56	<i>Drosophila lowfat</i> , a novel modulator of Fat signaling. Development (Cambridge), 2009, 136, 3223-3233.	1.2	59
57	Requirement for a core 1 galactosyltransferase in the Drosophilaner vous system. Developmental Dynamics, 2009, 238, spcone-spcone.	0.8	0
58	Developmental biology moves forward in the 21st century. Current Opinion in Genetics and Development, 2009, 19, 299-301.	1.5	0
59	Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Developmental Biology, 2009, 335, 188-197.	0.9	100
60	Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biology, 2008, 6, 1.	1.7	179
61	Requirement for a core 1 galactosyltransferase in the <i>Drosophila</i> nervous system. Developmental Dynamics, 2008, 237, 3703-3714.	0.8	36
62	A Notch Sweeter. Cell, 2008, 132, 177-179.	13.5	11
63	Morphogen Control of Wing Growth through the Fat Signaling Pathway. Developmental Cell, 2008, 15, 309-321.	3.1	232
64	In vivo regulation of Yorkie phosphorylation and localization. Development (Cambridge), 2008, 135, 1081-1088.	1.2	362
65	Four-jointed Is a Golgi Kinase That Phosphorylates a Subset of Cadherin Domains. Science, 2008, 321, 401-404.	6.0	226
66	The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development (Cambridge), 2008, 135, 2827-2838.	1.2	174
67	In Vitro Reconstitution of the Modulation of Drosophila Notch-Ligand Binding by Fringe. Journal of Biological Chemistry, 2007, 282, 35153-35162.	1.6	85
68	Fat and Expanded act in parallel to regulate growth through Warts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20362-20367.	3.3	123
69	Delineation of a Fat tumor suppressor pathway. Nature Genetics, 2006, 38, 1142-1150.	9.4	396
70	Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing. Developmental Dynamics, 2006, 235, 3051-3058.	0.8	122
71	Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development (Cambridge), 2006, 133, 2539-2551.	1.2	200
72	Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development (Cambridge), 2005, 132, 3823-3833.	1.2	102

#	Article	IF	CITATIONS
73	Regions of Drosophila Notch That Contribute to Ligand Binding and the Modulatory Influence of Fringe. Journal of Biological Chemistry, 2005, 280, 30158-30165.	1.6	68
74	Functional analysis of Drosophila \hat{l}^2 1,4-N-acetlygalactosaminyltransferases. Glycobiology, 2005, 15, 335-346.	1.3	71
75	Chaperone Activity of Protein O-Fucosyltransferase 1 Promotes Notch Receptor Folding. Science, 2005, 307, 1599-1603.	6.0	223
76	Regulation of Cell Proliferation by a Morphogen Gradient. Cell, 2005, 123, 449-461.	13.5	202
77	Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development (Cambridge), 2004, 131, 4489-4500.	1.2	142
78	Functional Characterization of Drosophila Sialyltransferase. Journal of Biological Chemistry, 2004, 279, 4346-4357.	1.6	111
79	Glycosylation regulates Notch signalling. Nature Reviews Molecular Cell Biology, 2003, 4, 786-797.	16.1	573
80	Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development (Cambridge), 2003, 130, 2829-2840.	1.2	34
81	Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6404-6409.	3.3	47
82	Modulation of Notch-Ligand Binding by Protein O-Fucosyltransferase 1 and Fringe. Journal of Biological Chemistry, 2003, 278, 42340-42345.	1.6	178
83	Notch Ligands Are Substrates for ProteinO-Fucosyltransferase-1 and Fringe. Journal of Biological Chemistry, 2002, 277, 29945-29952.	1.6	151
84	Identification of a Drosophila Gene Encoding Xylosylprotein \hat{l}^2 4-Galactosyltransferase That Is Essential for the Synthesis of Glycosaminoglycans and for Morphogenesis. Journal of Biological Chemistry, 2002, 277, 46280-46288.	1.6	43
85	Regulation of Notch Signaling by O-Linked Fucose. Cell, 2002, 111, 893-904.	13.5	356
86	Organizer activity of the polar cells during <i>Drosophila</i> oogenesis. Development (Cambridge), 2002, 129, 5131-5140.	1.2	69
87	Boundaries in Development: Formation and Function. Annual Review of Cell and Developmental Biology, 2001, 17, 189-214.	4.0	229
88	<i>fringe</i> and <i>Notch</i> specify polar cell fate during <i>Drosophila</i> oogenesis. Development (Cambridge), 2001, 128, 2243-2253.	1.2	98
89	Fringe is a glycosyltransferase that modifies Notch. Nature, 2000, 406, 369-375.	13.7	792
90	Roles for scalloped and vestigial in Regulating Cell Affinity and Interactions between the Wing Blade and the Wing Hinge. Developmental Biology, 2000, 228, 287-303.	0.9	64

#	Article	IF	CITATIONS
91	Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature, 1999, 401, 476-480.	13.7	98
92	Fringe, Notch, and making developmental boundaries. Current Opinion in Genetics and Development, 1999, 9, 434-441.	1.5	185
93	Notch-Mediated Segmentation and Growth Control of the Drosophila Leg. Developmental Biology, 1999, 210, 339-350.	0.9	168
94	Modulators of Notch signaling. Seminars in Cell and Developmental Biology, 1998, 9, 609-617.	2.3	71
95	Dorsal-Ventral Signaling in the Drosophila Eye. , 1998, 281, 2031-2034.		216
96	Dorsalâ€"ventral signaling in limb development. Current Opinion in Cell Biology, 1997, 9, 867-876.	2.6	135
97	Fringe modulates Notch–ligand interactions. Nature, 1997, 387, 908-912.	13.7	569
98	Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing drosophila wing. Cell, 1995, 82, 795-802.	13.5	259
99	fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell, 1994, 79, 595-606.	13.5	333
100	Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor. Cell, 1986, 45, 167-176.	13.5	82