
Marie Mirouze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2640661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomeâ€level <i>Thlaspi arvense</i> genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20, 944-963.	8.3	18
2	Diverse and mobile: <scp>eccDNA</scp> â€based identification of carrot lowâ€copyâ€number <scp>LTR</scp> retrotransposons active in callus cultures. Plant Journal, 2022, 110, 1811-1828.	5.7	11
3	Identification of Extrachromosomal Circular Forms of Active Transposable Elements Using Mobilome-Seq. Methods in Molecular Biology, 2021, 2250, 87-93.	0.9	9
4	ANCHOR: A Technical Approach to Monitor Single-Copy Locus Localization in Planta. Frontiers in Plant Science, 2021, 12, 677849.	3.6	6
5	RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. New Phytologist, 2021, 232, 80-97.	7.3	31
6	ecc_finder: A Robust and Accurate Tool for Detecting Extrachromosomal Circular DNA From Sequencing Data. Frontiers in Plant Science, 2021, 12, 743742.	3.6	34
7	Large tandem duplications affect gene expression, 3D organization, and plant–pathogen response. Genome Research, 2020, 30, 1583-1592.	5.5	31
8	LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Planta, 2019, 250, 1781-1787.	3.2	25
9	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	21.4	439
10	Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host and Microbe, 2018, 23, 353-365.e8.	11.0	124
11	Aspects of Epigenetic Regulation in Cereals. Advances in Botanical Research, 2018, , 361-386.	1.1	0
12	The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Research, 2018, 46, 9524-9536.	14.5	34
13	Transposable elements: all mobile, all different, some stress responsive, some adaptive?. Current Opinion in Genetics and Development, 2018, 49, 106-114.	3.3	81
14	Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Planta, 2018, 248, 729-743.	3.2	24
15	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	6.4	279
16	Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. BMC Genomics, 2017, 18, 537.	2.8	39
17	Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biology, 2017, 18, 134.	8.8	84
18	DNA Methylation in Rice and Relevance for Breeding. Epigenomes, 2017, 1, 10.	1.8	18

MARIE MIROUZE

#	Article	IF	CITATIONS
19	Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genetics, 2017, 13, e1006630.	3.5	118
20	Adaptation to Global Change: A Transposable Element–Epigenetics Perspective. Trends in Ecology and Evolution, 2016, 31, 514-526.	8.7	163
21	A dynamic architecture of life. F1000Research, 2015, 4, 1288.	1.6	4
22	Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research, 2014, 24, 831-838.	5.5	177
23	Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. Journal of Experimental Botany, 2014, 65, 2801-2812.	4.8	79
24	Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 2013, 3, 399-415.	1.9	271
25	Parentâ€ofâ€origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Reports, 2013, 14, 823-828.	4.5	22
26	Loss of DNA methylation affects the recombination landscape in <i>Arabidopsis</i> . Proceedings of the United States of America, 2012, 109, 5880-5885.	7.1	186
27	The Small RNA-Based Odyssey of Epigenetic Information in Plants: From Cells to Species. DNA and Cell Biology, 2012, 31, 1650-1656.	1.9	37
28	Epigenetic control of transposon transcription and mobility in Arabidopsis. Current Opinion in Plant Biology, 2012, 15, 503-510.	7.1	110
29	An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 2011, 472, 115-119.	27.8	550
30	Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 2011, 14, 267-274.	7.1	433
31	Compromised stability of DNA methylation and transposon immobilization in mosaic <i>Arabidopsis</i> epigenomes. Genes and Development, 2009, 23, 939-950.	5.9	380
32	Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 2009, 461, 427-430.	27.8	315
33	Construction and characterisation of a BAC library from Arabidopsis halleri: Evaluation of physical mapping based on conserved synteny with Arabidopsis thaliana. Plant Science, 2008, 174, 634-640.	3.6	7
34	A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant,Arabidopsis halleri, confers zinc tolerance. Plant Journal, 2006, 47, 329-342.	5.7	170