Clare H Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1342-1346.	7.1	1,060
2	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
3	Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 2001, 151, 341-353.	7.3	475
4	Mycorrhizal Symbiosis, 2nd edn Journal of Ecology, 1997, 85, 925.	4.0	317
5	Diversity and function of decomposer fungi from a grassland soil. Soil Biology and Biochemistry, 2006, 38, 7-20.	8.8	144
6	An arctic community of symbiotic fungi assembled by longâ€distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. Journal of Biogeography, 2012, 39, 74-88.	3.0	143
7	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
8	Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 2017, 20, 1534-1545.	6.4	136
9	Controls on decomposition and soil nitrogen availability at high latitudes. Plant and Soil, 2002, 242, 65-81.	3.7	113
10	Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecology Letters, 2016, 19, 528-536.	6.4	109
11	â€~Decomposer' Basidiomycota in Arctic and Antarctic ecosystems. Soil Biology and Biochemistry, 2008, 40, 11-29.	8.8	62
12	Greater nitrogen and/or phosphorus availability increase plant species' cover and diversity at a High Arctic polar semidesert. Polar Biology, 2007, 30, 559-570.	1.2	50
13	Fungal communities on decaying wheat straw of different resource qualities. Soil Biology and Biochemistry, 1994, 26, 1053-1058.	8.8	48
14	Nutrient and carbon dioxide release by interacting species of straw-decomposing fungi. Plant and Soil, 1993, 151, 139-142.	3.7	46
15	The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Applied Soil Ecology, 1997, 5, 109-131.	4.3	45
16	EB2017—Progress in Epidermolysis Bullosa Research toward Treatment and Cure. Journal of Investigative Dermatology, 2018, 138, 1010-1016.	0.7	45
17	Resource capture by interacting fungal colonizers of straw. Mycological Research, 1993, 97, 547-558.	2.5	39
18	Nitrogen addition alters composition, diversity, and functioning of microbial communities in mangrove soils: An incubation experiment. Soil Biology and Biochemistry, 2021, 153, 108076.	8.8	38

CLARE H ROBINSON

#	Article	IF	CITATIONS
19	Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycological Research, 2003, 107, 996-1008.	2.5	33
20	Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environmental Microbiology, 2019, 21, 1586-1596.	3.8	30
21	Recorded Mental Health Recovery Narratives as a Resource for People Affected by Mental Health Problems: Development of the Narrative Experiences Online (NEON) Intervention. JMIR Formative Research, 2021, 5, e24417.	1.4	29
22	Spatial distribution of fungal communities in a coastal grassland soil. Soil Biology and Biochemistry, 2009, 41, 414-416.	8.8	28
23	Distribution of monoterpenes between organic resources in upper soil horizons under monocultures of Picea abies, Picea sitchensis and Pinus sylvestris. Soil Biology and Biochemistry, 2009, 41, 1050-1059.	8.8	26
24	Earthworm communities of limed coniferous soils: Field observations and implications for forest management. Forest Ecology and Management, 1992, 55, 117-134.	3.2	25
25	Does nitrogen deposition affect soil microfungal diversity and soil N and P dynamics in a high Arctic ecosystem?. Global Change Biology, 2004, 10, 1065-1079.	9.5	25
26	Decomposition of lignin in wheat straw in a sand-dune grassland. Soil Biology and Biochemistry, 2012, 45, 128-131.	8.8	25
27	Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soils to selected monoterpenes. Soil Biology and Biochemistry, 2008, 40, 669-678.	8.8	24
28	Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. Frontiers in Plant Science, 2015, 6, 580.	3.6	16
29	Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of the Total Environment, 2021, 759, 143467.	8.0	15
30	Potential for monoterpenes to affect ectomycorrhizal and saprotrophic fungal activity in coniferous forests is revealed by novel experimental system. Soil Biology and Biochemistry, 2009, 41, 117-124.	8.8	12
31	Characterisation of cold-tolerant fungi from a decomposing High Arctic moss. Soil Biology and Biochemistry, 2011, 43, 1975-1979.	8.8	11
32	Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. Science of the Total Environment, 2018, 640-641, 921-934.	8.0	7
33	Methods in Soil Biology Journal of Ecology, 1997, 85, 404.	4.0	6
34	Driven by Nature: Plant Litter Quality and Decomposition Journal of Ecology, 1997, 85, 733.	4.0	4
35	A Previously Undescribed Helotialean Fungus That Is Superabundant in Soil Under Maritime Antarctic Higher Plants. Frontiers in Microbiology, 2020, 11, 615608.	3.5	4
36	Specific arbuscular mycorrhizal fungal–plant interactions determine radionuclide and metal transfer into <i>Plantago lanceolata</i> . Plants People Planet, 2021, 3, 667-678.	3.3	4

#	Article	IF	CITATIONS
37	Rootâ€associated fungi and carbon storage in Arctic ecosystems. New Phytologist, 2020, 226, 8-10.	7.3	3
38	The Arctic: Environment, People, Policy Journal of Ecology, 2001, 89, 1096-1097.	4.0	0
39	Dr Juliet Camilla Frankland, 30th January 1929–9th June 2013. Fungal Ecology, 2013, 6, 464-465.	1.6	0