Jietai Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639741/publications.pdf

Version: 2024-02-01

	1898	304743			
50		22	2,672	79	
g-index		h-index	citations	papers	
	_				Ξ
1013		79	79	79	
<i>3</i>					
g-index 1013 citing authors		h-index 79 times ranked	citations 79 docs citations	papers 79 all docs	

#	Article	IF	CITATIONS
1	Violation of high-dimensional Bell inequality using narrowband orbital-angular-momentum entanglement from warm atomic vapor. Physical Review A, 2022, 105, .	2.5	1
2	Generation of octapartite entanglement by connecting two symmetric cascaded four-wave mixing processes with one linear beam splitter. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 619.	2.1	2
3	All-Optical Entanglement Swapping. Physical Review Letters, 2022, 128, 060503.	7.8	19
4	Multi-Way Noiseless Signal Amplification in a Symmetrical Cascaded Four-Wave Mixing Process. Photonics, 2022, 9, 229.	2.0	0
5	Enhancing the precision of a phase measurement through phase-sensitive non-Gaussianity. Physical Review A, 2022, 105, .	2.5	1
6	Generation of twelve-partite entanglement from two symmetric four-wave mixing processes. Optics Communications, 2022, , 128470.	2.1	2
7	Path–orbital-angular-momentum high-dimensional hyperentangled photons from a warm atomic ensemble. Physical Review A, 2022, 105, .	2.5	3
8	Self-healing of multipartite entanglement in optical quantum networks. Optica, 2022, 9, 663.	9.3	7
9	Deterministic generation of large-scale hyperentanglement in three degrees of freedom. , 2022, $1, \dots$		5
10	All-Optical Optimal <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -to- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>M</mml:mi> Quantum Cloning of Coherent States. Physical Review Letters, 2021, 126, 060503.</mml:math 	7.8	11
11	Nonlinear interferometric surface-plasmon-resonance sensor. Optics Express, 2021, 29, 11194.	3.4	6
12	Experimental Demonstration of a Multifunctional All-Optical Quantum State Transfer Machine. Physical Review Letters, 2021, 126, 210507.	7.8	5
13	Orbital Angular Momentum Multiplexed Quantum Dense Coding. Physical Review Letters, 2021, 127, 093601.	7.8	44
14	Multidimensional four-wave mixing signals detected by quantum squeezed light. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
15	Nonlinear interferometer based on two-port feedback nondegenerate optical parametric amplification. Optics Communications, 2021, 496, 127137.	2.1	4
16	Low-Noise Intensity Amplification of a Bright Entangled Beam. Chinese Physics Letters, 2021, 38, 090301.	3.3	0
17	Phase manipulated two-mode entangled state from a phase-sensitive amplifier. Optics Express, 2021, 29, 38971-38978.	3.4	1
18	Large-Scale Quantum Network over 66 Orbital Angular Momentum Optical Modes. Physical Review Letters, 2020, 125, 140501.	7.8	34

#	Article	IF	Citations
19	Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nature Communications, 2020, 11, 3875.	12.8	93
20	Generation of hexapartite entanglement in a four-wave-mixing process with a spatially structured pump: Theoretical study. Physical Review A, 2020, 102, .	2.5	5
21	Reconfigurable Hexapartite Entanglement by Spatially Multiplexed Four-Wave Mixing Processes. Physical Review Letters, 2020, 124, 090501.	7.8	65
22	Deterministic Generation of Orbital-Angular-Momentum Multiplexed Tripartite Entanglement. Physical Review Letters, 2020, 124, 083605.	7.8	73
23	Enhancement of tripartite quantum correlation by coherent feedback control. Physical Review A, 2020, 101, .	2.5	3
24	Quantum-enhanced stochastic phase estimation with the $SU(1,1)$ interferometer. Photonics Research, 2020, 8, 1653.	7.0	12
25	Enhancement of quantum correlations using correlation injection scheme in a cascaded four-wave mixing processes. Optics Express, 2020, 28, 10633.	3.4	3
26	Characterization of quantum squeezing generated from the phase-sensitive and phase-insensitive amplifiers in the ultra-low average input photon number regime. Optics Express, 2020, 28, 36487.	3.4	0
27	Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor. Physical Review Letters, 2019, 123, 070506.	7.8	83
28	Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier. Physical Review Letters, 2019, 123, 113602.	7.8	47
29	Generation of quadripartite unlockable bound entanglement from cascaded four-wave mixing processes. Physical Review A, 2019, 99, .	2.5	0
30	Detection of Linkage Between Solar and Lunar Cycles and Runoff of the World's Large Rivers. Earth and Space Science, 2019, 6, 914-930.	2.6	8
31	Preserving quantum entanglement from parametric amplifications with a correlation modulation scheme. Physical Review A, 2019, 99, .	2.5	2
32	Experimental characterization of multiple quantum correlated beams in two-beam pumped cascaded four-wave mixing process. Optics Express, 2019, 27, 37999.	3.4	7
33	Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation. Physical Review A, 2018, 97, .	2.5	21
34	Experimental realization of a feedback optical parametric amplifier with four-wave mixing. Physical Review B, 2018, 97, .	3.2	14
35	Generation of quadripartite entanglement from a hybrid scheme with a four-wave mixing process and linear beam splitters. Optics Communications, 2018, 424, 63-69.	2.1	4
36	Experimental characterization of pairwise correlations from triple quantum correlated beams generated by cascaded four-wave mixing processes. Applied Physics Letters, 2018, 112, .	3.3	12

#	Article	IF	CITATIONS
37	Quantum Enhancement of Phase Sensitivity for the Bright-Seeded $SU(1,1)$ Interferometer with Direct Intensity Detection. Physical Review Applied, 2018, 10, .	3.8	33
38	Experimental characterization of pairwise correlations from quadruple quantum correlated beams generated by cascaded four-wave mixing processes. Applied Physics Letters, 2018, 112, .	3.3	12
39	Effect of losses on multipartite entanglement from cascaded four-wave mixing processes. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2806.	2.1	1
40	Counterpropagating path-entangled photon pair sources based on simultaneous spontaneous parametric down-conversion processes of nonlinear photonic crystal. Optics Express, 2018, 26, 27945.	3.4	3
41	Experimental observation of multi-spatial-mode quantum correlations in four-wave mixing with a conical pump and a conical probe. Applied Physics Letters, 2017, 110, 241103.	3.3	9
42	Optimization of Quantum Correlation in Cascaded Four-Wave Mixing. International Journal of Theoretical Physics, 2017, 56, 822-832.	1.2	0
43	Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing. Physical Review A, 2017, 95, .	2.5	35
44	Characterization of Pairwise Correlations from Multiple Quantum Correlated Beams Generated from Cascaded Four-Wave Mixing Processes. Scientific Reports, 2017, 7, 40410.	3.3	6
45	Generation of path-polarization hyperentanglement using quasi-phase-matching in quasi-periodic nonlinear photonic crystal. Scientific Reports, 2017, 7, 4954.	3.3	3
46	Phase-sensitive cascaded four-wave-mixing processes for generating three quantum correlated beams. Physical Review A, 2017, 95, .	2.5	7
47	Generation of quadripartite entanglement from cascaded four-wave-mixing processes. Physical Review A, 2017, 96, .	2.5	20
48	Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump. Physical Review A, 2017, 95, .	2.5	49
49	Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter. Optics Express, 2017, 25, 15854.	3.4	4
50	Quantum steering in cascaded four-wave mixing processes. Optics Express, 2017, 25, 17457.	3.4	15
51	Nonlinear Sagnac interferometer based on the four-wave mixing process. Optics Express, 2017, 25, 1350.	3.4	9
52	Enhancement of entanglement using cascaded four-wave mixing processes. Optics Letters, 2017, 42, 366.	3.3	17
53	Experimental observation of quantum correlations in four-wave mixing with a conical pump. Optics Letters, 2017, 42, 1201.	3.3	12
54	Entanglement in a four-wave mixing process. Optics Letters, 2017, 42, 2754.	3.3	6

#	Article	IF	CITATIONS
55	Generation of tripartite entanglement from cascaded four-wave mixing processes. Optics Express, 2016, 24, 23459.	3.4	22
56	Experimental implementation of a nonlinear beamsplitter based on a phase-sensitive parametric amplifier. Applied Physics Letters, 2016 , 108 , .	3.3	13
57	Experimental implementation of phase locking in a nonlinear interferometer. Applied Physics Letters, 2015, 107, .	3.3	16
58	Quantum-network generation based on four-wave mixing. Physical Review A, 2015, 91, .	2.5	50
59	Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor. New Journal of Physics, 2015, 17, 023027.	2.9	51
60	Quantum optical devices based on four-wave mixing in hot rubidium vapor. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-8.	5.1	5
61	Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes. Applied Physics Letters, 2015, 106, .	3.3	22
62	Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor. Physical Review Letters, 2014, 113, 023602.	7.8	153
63	Continuous-variable cluster-state generation over the optical spatial mode comb. Physical Review A, 2014, 90, .	2.5	32
64	Ultralow-light-level all-optical transistor in rubidium vapor. Applied Physics Letters, 2014, 104, 151103.	3.3	7
65	Quantum metrology with parametric amplifier-based photon correlation interferometers. Nature Communications, 2014, 5, 3049.	12.8	322
66	Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers. Applied Physics Letters, 2013, 102, .	3.3	40
67	Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor. Optics Letters, 2012, 37, 3141.	3.3	47
68	Optical logic gates using coherent feedback. Applied Physics Letters, 2012, 101, .	3.3	14
69	Squeezing bandwidth controllable twin beam light and phase sensitive nonlinear interferometer based on atomic ensembles. Science Bulletin, 2012, 57, 1925-1930.	1.7	3
70	Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor. Optics Letters, 2011, 36, 2979.	3.3	59
71	Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence. Physical Review A, 2011, 83, .	2.5	92
72	Realization of a nonlinear interferometer with parametric amplifiers. Applied Physics Letters, 2011, 99, .	3.3	152

#	Article	IF	CITATIONS
73	Coherently enhanced Raman scattering in atomic vapor. Physical Review A, 2010, 82, .	2.5	11
74	Enhanced Raman scattering by spatially distributed atomic coherence. Applied Physics Letters, 2009, 95, 041115.	3.3	21
75	Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables. Physical Review Letters, 2003, 90, 167903.	7.8	316
76	Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam. Physical Review Letters, 2002, 88, 047904.	7.8	361
77	LD pumped intracavity frequency-doubled and frequency-stabilized Nd:YAP/KTP laser with 1.1 W output at 540 nm. Optics Communications, 2002, 201, 165-171.	2.1	12
78	Generation and application of tripartite entangled state for continuous electromagnetic field., 0,,.		0
79	Maximal entanglement increase with single-photon subtraction. Quantum - the Open Journal for Quantum Science, 0, 6, 704.	0.0	2