Qingzhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639136/publications.pdf

Version: 2024-02-01

131 papers	2,636 citations	27 h-index	223800 46 g-index
132	132	132	1506
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The role of nitro group on the excited-state relaxation mechanism of P-Z base pair. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120549.	3.9	1
2	A small molecule fluorescent probe for mercury ion analysis in broad low pH range: Spectral, optical mechanism and application studies. Journal of Hazardous Materials, 2022, 424, 127701.	12.4	27
3	Promotion of TH3 (T = Si and Ge) group transfer within a tetrel bond by a cation–π interaction. Physical Chemistry Chemical Physics, 2022, 24, 1113-1119.	2.8	3
4	Halogen Bond Catalysis on Carbonyl–Olefin <scp>Ringâ€Closing</scp> Metathesis Reaction: Comparison with Lewis Acid Catalysis. Chinese Journal of Chemistry, 2022, 40, 1275-1284.	4.9	4
5	Insight into Spodium–π Bonding Characteristics of the MX2âҁÏ€ (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes—A Theoretical Study. Molecules, 2022, 27, 2885.	3.8	4
6	Resonance-assisted intramolecular triel bonds. Physical Chemistry Chemical Physics, 2022, 24, 15015-15024.	2.8	6
7	Unusual substituent effects in the Tr···Te triel bond. International Journal of Quantum Chemistry, 2021, 121, e26526.	2.0	6
8	Cooperative effects between triel and halogen bonds in complexes of pyridine derivatives: An opposite effect of the nitrogen oxidation on triel and halogen bonds. International Journal of Quantum Chemistry, 2021, 121, e26429.	2.0	6
9	Facile fabrication of degradable polyurethane thermosets with high mechanical strength and toughness <i>via</i> the cross-linking of triple boron–urethane bonds. Journal of Materials Chemistry A, 2021, 9, 22410-22417.	10.3	28
10	Theoretical investigation of the nature of Ï€(Bî€,B)â<™ interactions in coinage metal Ï€-diborene complexes. New Journal of Chemistry, 2021, 45, 13380-13388.	2.8	5
11	Weak Ïfâ∈Hole Triel Bond between C 5 H 5 Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. ChemPhysChem, 2021, 22, 481-487.	2.1	15
12	Graphitic SiC : A potential anode material for Naâ€ion battery with extremely high storage capacity. International Journal of Quantum Chemistry, 2021, 121, e26608.	2.0	2
13	Fabricating Flexible Packaging Batteries in General Chemistry Laboratories. Journal of Chemical Education, 2021, 98, 2471-2475.	2.3	2
14	Diboron Bonds Between BX 3 (X=H, F, CH 3) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). ChemPhysChem, 2021, 22, 1461-1469.	2.1	4
15	Can metal halides be electron donors in Ïfâ€hole and Ï€â€hole tetrel bonds? Cooperativity with an alkalineâ€earth bond. International Journal of Quantum Chemistry, 2021, 121, e26771.	2.0	1
16	Group 12 Carbonates and their Binary Complexes with Nitrogen Bases and FH 2 Z Molecules (Z=P, As,) Tj ETQq0	0 <u>0 rg</u> BT /	Overlock 10 1
17	Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. ChemPhysChem, 2021, 22, 2305-2312.	2.1	6
18	Noncovalent bond between tetrel π-hole and hydride. Physical Chemistry Chemical Physics, 2021, 23, 10536-10544.	2.8	2

#	Article	IF	CITATIONS
19	Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds. ACS Omega, 2021, 6, 29037-29044.	3.5	3
20	Chalcogen Bond Involving Zinc(II)/Cadmium(II) Carbonate and Its Enhancement by Spodium Bond. Molecules, 2021, 26, 6443.	3.8	6
21	Tetrel Bonds between Phenyltrifluorosilane and Dimethyl Sulfoxide: Influence of Basis Sets, Substitution and Competition. Molecules, 2021, 26, 7231.	3.8	4
22	Comparison of triel bonds with different chalcogen electron donors: Its dependence on triel donor and methyl substitution. International Journal of Quantum Chemistry, 2020, 120, e26046.	2.0	11
23	Halogen bond between hypervalent halogens YF3/YF5 (Y=Cl, Br, I) and H2X (X= O, S, Se). Molecular Physics, 2020, 118, e1656834.	1.7	2
24	Regular/abnormal variation in the strength and nature of the halogen bond between H ₂ Te and the dihalogens: Prominent effect of methyl substituents. Applied Organometallic Chemistry, 2020, 34, e5468.	3.5	3
25	Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. ChemPhysChem, 2020, 21, 212-219.	2.1	28
26	Interactions in Model Ionic Dyads and Triads Containing Tetrel Atoms. Molecules, 2020, 25, 4197.	3.8	3
27	Synergistic and Diminutive Effects between Regium and Aerogen Bonds. ChemPhysChem, 2020, 21, 2426-2431.	2.1	17
28	Effect of carbon hybridization in Câ€"F bond as an electron donor in triel bonds. Journal of Chemical Physics, 2020, 153, 074304.	3.0	6
29	Reliable Comparison of Pnicogen, Chalcogen, and Halogen Bonds in Complexes of 6-OXF2-Fulvene (X =) Tj ETQq1	1,0.78431	14 rgBT /O√
30	Complexes of HArF and AuX (X = F, Cl, Br, I). Comparison of Hâ€bonds, halogen bonds, Fâ€shared bonds and covalent bonds. Applied Organometallic Chemistry, 2020, 34, e5891.	3.5	6
31	Xeâ√chalcogen aerogen bond. Effect of substituents and size of chalcogen atom. Physical Chemistry Chemical Physics, 2020, 22, 4115-4121.	2.8	11
32	The Ï€â€hole tetrel bond between <scp>X₂TO</scp> and <scp>CO₂</scp> : Substituent effects and its potential adsorptivity for <scp>CO₂</scp> . International Journal of Quantum Chemistry, 2020, 120, e26251.	2.0	15
33	Competition between σ-hole pnicogen bond and π-hole tetrel bond in complexes of CF ₂ =CFZH ₂ (Z = P, As, and Sb). Molecular Physics, 2019, 117, 251-259.	1.7	15
34	Comparative study of 1:1 Lewis acid–base adducts between Cp2M(L)H (M = V, Nb, Ta; L = CC and BF3/AlF3. Theoretical Chemistry Accounts, 2019, 138, 1.), C2H4, P	(CH3)3)
35	Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pairâ⁻'Ï€ Interactions Tuned by Substituents. Journal of Physical Chemistry A, 2019, 123, 7288-7295.	2.5	11
36	Coinage-Metal Bond between $[1.1.1]$ Propellane and M2/MCI/MCH3 (M = Cu, Ag, and Au): Cooperativity and Substituents. Molecules, 2019, 24, 2601.	3.8	14

#	Article	IF	CITATIONS
37	Regulating PdC3/PtC3···thiophene interaction by small molecule doping (AgOTf, CuBr, CuI, CuBr2,) Tj ETQq1 1	0:784314 2:0	4 rgBT /Over
38	Noncovalent Interactions in Complexes Involving the Cyclic C 2 H 2 X (X=O, S, Se) Molecules and the Lewis Acids YF (Y=F, Cl, Br, H). ChemistrySelect, 2019, 4, 9506-9515.	1.5	1
39	Coinage metal dimers as the noncovalent interaction acceptors: study of the l f-lump interactions. Physical Chemistry Chemical Physics, 2019, 21, 21152-21161.	2.8	11
40	A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection. Journal of Materials Chemistry A, 2019, 7, 124-132.	10.3	93
41	Thermoresponsive Graphene Membranes with Reversible Gating Regularity for Smart Fluid Control. Advanced Functional Materials, 2019, 29, 1808501.	14.9	70
42	Theoretical Design of Near-Infrared Fluorescent Sensor for F Anion Detection Based on 10-Hydroxybenzo[<i>h</i>]quinoline Backbone. ACS Omega, 2019, 4, 10516-10523.	3.5	6
43	Comparison between Hydrogen and Halogen Bonds in Complexes of 6â€OXâ€Fulvene with Pnicogen and Chalcogen Electron Donors. ChemPhysChem, 2019, 20, 1978-1984.	2.1	16
44	New insights into the dihydrogen bonds (MHδâ^'···Hδ+X) in CpM(PMe3)(L)2H···HX (M=Cr, Mo, W; L=PMe3	, <u>C</u> Q;) Tj E	TQq0 0 0 rg
45	Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between Ï€â€hole and σâ€hole. Applied Organometallic Chemistry, 2019, 33, e4806.	3.5	25
46	Comparison of σâ€hole and Ï€â€hole tetrel bonds in complexes of borazine with TH ₃ F and F ₂ TO/H ₂ TO (T = C, Si, Ge). International Journal of Quantum Chemistry, 2019, 119, e25910.	2.0	19
47	Carbene triel bonds between TrR 3 (Tr = B, Al) and Nâ€heterocyclic carbenes. International Journal of Quantum Chemistry, 2019, 119, e25867.	2.0	27
48	Comparison of $ f \in \mathcal{H} \in \mathcal{H}$ le Tetrel Bonds between TH $\langle Sub \rangle 3 \langle Sub \rangle F/F \langle Sub \rangle 2 \langle Sub \rangle TO$ and H $\langle Sub \rangle 2 \langle Sub \rangle CX$ (X=O, S, Se). ChemPhysChem, 2019, 20, 627-635.	2.1	28
49	Influence of substituents and cooperativity in doubly hydrogen-bonded complexes of 2-pyridone and oxalic acid. Molecular Physics, 2018, 116, 1862-1870.	1.7	1
50	Abnormal Tetrel Bonds between Formamidine and TH ₃ F: Substituent Effects. ChemistrySelect, 2018, 3, 2842-2849.	1.5	9
51	Theoretical assessing on the coordination mode and bonding in heteronuclear groupâ€13 dimetallocene. International Journal of Quantum Chemistry, 2018, 118, e25461.	2.0	1
52	Comparison for σ-hole and π-hole tetrel-bonded complexes involving cyanoacetaldehyde. Molecular Physics, 2018, 116, 222-230.	1.7	22
53	The Ï€â€Tetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer. ChemPhysChem, 2018, 19, 736-743.	2.1	46
			!

Stability and donor-acceptor bond in dinuclear organometallics CpM1â \in "M2Cl3 (M1, M2â \in ‰=â \in ‰B, Al, Ga, In; Cpâ \in ‰=â \in ‰·l \cdot) Tj ETCl3 (M1, M2â \in ‰=â \in ‰B, Al, Ga, In; Cpâ \in ‰=â \in 3‰·l \cdot) Tj ETCl3 (M1, M2â \in ‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰=â \in 3‰·l \cdot) Tj ETCl3 (M1, M2â \in 3‰=â \in 3‰B, Al, Ga, In; Cpâ \in 3‰B, Al, Cpâ \in 3‰B,

54

#	Article	IF	CITATIONS
55	Physicochemical Properties, 1H-NMR, Ab Initio Calculations and Molecular Interaction in Binary Mixtures of N-methylimidazole with Methanol. Journal of Solution Chemistry, 2018, 47, 1875-1901.	1.2	10
56	Comparison of halide donators based on pi···M (M = Cu, Ag, Au), pi···Ĥ and pi···halogen bonds Chemistry Accounts, 2018, 137, 1.	s. Theoreti 1.4	cgl
57	Triel–hydride triel bond between ZX ₃ (Z = B and Al; X = H and Me) and THMe ₃ (T) Tj E	TQq1 1 0.	.784314 rgB 14
58	Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. Molecules, 2018, 23, 1681.	3.8	69
59	Dual function of the boron center of BH(CO)2/BH(N2)2 in halogen- and triel-bonded complexes with hypervalent halogens. Journal of Molecular Graphics and Modelling, 2018, 84, 118-124.	2.4	8
60	Structures of the phosphinidene germylenoid HP=GeLiF and its cycloaddition reaction with ethylene. Structural Chemistry, 2018, 29, 1647-1653.	2.0	5
61	Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF $<$ sub $>3sub>and furanTF<sub>3sub>(T = C, Si, and Ge) with NH<sub>3sub>. Physical Chemistry Chemical Physics, 2017, 19, 5550-5559.$	2.8	98
62	Interplay between the Ïf-tetrel bond and Ïf-halogen bond in PhSiF ₃ â<-4-iodopyridineâ<-N-base. RSC Advances, 2017, 7, 21713-21720.	3.6	26
63	Carbene tetrel-bonded complexes. Structural Chemistry, 2017, 28, 823-831.	2.0	47
64	The addition reactions of germylenoid H2GeAlCl3 with ethylene: a theoretical investigation. Journal of Molecular Modeling, 2017, 23, 199.	1.8	2
65	Regulation of coin metal substituents and cooperativity on the strength and nature of tetrel bonds. RSC Advances, 2017, 7, 46321-46328.	3.6	20
66	The ground and excited-state electronic structures of sandwich compounds $Cp2(ME)2$ contain an (ME)2 four-membered ring ($Cp = C5H5$; $M = Ni$, Pd , Pt ; $E = O$, S , Se , Te). New Journal of Chemistry, 2017, 41, 12028-12034.	2.8	3
67	Comparison of Ïfâ€Hole and Ï€â€Hole Tetrel Bonds Formed by Pyrazine and 1,4â€Dicyanobenzene: The Interplay between Anion–π and Tetrel Bonds. ChemPhysChem, 2017, 18, 2442-2450.	2.1	38
68	Chemical Origin of Termination-Functionalized MXenes: Ti ₃ C ₂ <i>T(i)₂ as a Case Study. Journal of Physical Chemistry C, 2017, 121, 19254-19261.</i>	3.1	194
69	Intramolecular Siâ«â«â«0 Tetrel Bonding: Tuning of Substituents and Cooperativity. ChemistrySelect, 2017, 2 11104-11112.		8
70	Tetrel bond of pseudohalide anions with XH3F ($X = C$, Si, Ge, and Sn) and its role in SN2 reaction. Journal of Chemical Physics, 2016, 145, 224310.	3.0	68
71	Influence of the protonation of pyridine nitrogen on pnicogen bonding: competition and cooperativity. Physical Chemistry Chemical Physics, 2016, 18, 11348-11356.	2.8	16

Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF₃X (Z = C) Tj ETQq0 0 $\frac{9}{19}$ BT /Overlock 10 Tillock 10

#	Article	IF	CITATIONS
73	Modulating the strength of tetrel bonding through beryllium bonding. Journal of Molecular Modeling, 2016, 22, 192.	1.8	28
74	Some measures for making a traditional halogen bond be chlorine-shared or ion-pair one in FCl•NH3 complex. Molecular Physics, 2016, 114, 3643-3649.	1.7	13
75	Theoretical investigation of the addition reaction of the aluminum chlorosilylenoid H2SiAlCl3 with ethylene. Journal of Molecular Modeling, 2016, 22, 150.	1.8	4
76	Dinuclear first-row transition metal–(C8Me6)2complexes: metal–metal and metal–ligand bonds determined by the d electron configuration of the metal atom. New Journal of Chemistry, 2016, 40, 1988-1996.	2.8	9
77	Comparison of hydrogen, halogen, and tetrel bonds in the complexes of HArF with YH $<$ sub $>3sub>X (X = halogen, Y = C and Si). RSC Advances, 2016, 6, 19136-19143.$	3.6	28
78	Tetrel bonds between PySiX3 and some nitrogenated bases: Hybridization, substitution, and cooperativity. Journal of Molecular Graphics and Modelling, 2016, 65, 35-42.	2.4	36
79	Enhancing effect of metal coordination interaction on pnicogen bonding. Journal of Molecular Modeling, 2016, 22, 64.	1.8	3
80	Complicated synergistic effects between metal–π interaction and halogen bonding involving MCCX. RSC Advances, 2015, 5, 105160-105168.	3.6	6
81	Influence of substituents on the nature of metalâç i€ interaction and its cooperativity with halogen bond. Journal of Chemical Physics, 2015, 143, 054308.	3.0	14
82	Influence of F and Se substitution on the structures, stabilities and nature of the complexes between $F \cdot S = 10$, SC Advances, 2015, 5, 52667-52675.	3.6	7
83	How do organic gold compounds and organic halogen molecules interact? Comparison with hydrogen bonds. RSC Advances, 2015, 5, 12488-12497.	3.6	18
84	The dual role of pnicogen as Lewis acid and base and the unexpected interplay between the pnicogen bond and coordination interaction in H ₃ Nâ <fh<sub>2Xâ<mcn (x="P" ag,)<="" and="" as;="" m="Cu," td=""><td>Tj EZI.Qq0 (</td><td>O 02gBT /Ove</td></mcn></fh<sub>	Tj E ZI.Q q0 (O 0 2g BT /Ove
85	Se···N Chalcogen Bond and Se···X Halogen Bond Involving F ₂ Câ•6e: Influence of Hybridization, Substitution, and Cooperativity. Journal of Physical Chemistry A, 2015, 119, 3518-3527.	2.5	45
86	Synergic mechanism of an organic corrosion inhibitor for preventing carbon steel corrosion in chloride solution. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 325-330.	1.0	8
87	Ultrahigh hydrogen storage capacity of novel porous aromatic frameworks. Journal of Materials Chemistry A, 2015, 3, 10724-10729.	10.3	23
88	Abnormal synergistic effects between Lewis acid–base interaction and halogen bond in F ₃ B···NCX··NCM. Molecular Physics, 2015, 113, 3809-3814.	1.7	23
89	Theoretical study of synergistic effects between anion–π and metal–Lp interactions. RSC Advances, 2015, 5, 76912-76918.	3.6	5
90	Synergistic and diminutive effects between halogen bond and lithium bond in complexes involving aromatic compounds. Journal of Molecular Modeling, 2015, 21, 257.	1.8	2

#	Article	IF	CITATIONS
91	Competition between halogen bond and hydrogen bond in complexes of superalkali Li ₃ S and halogenated acetylene XCCH (X = F, Cl, Br, and I). International Journal of Quantum Chemistry, 2015 115, 99-105.	,2.0	9
92	Prediction and characterization of halogen bonds involving formamidine and its derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 195-202.	3.9	5
93	Non-additivity between substitution and cooperative effects in enhancing hydrogen bonds. Journal of Chemical Physics, 2014, 141, 244305.	3.0	11
94	Cooperative and Diminutive Effects of Pnicogen Bonds and Cation–π Interactions. ChemPhysChem, 2014, 15, 500-506.	2.1	38
95	A quantum chemical study of the structures, stability, and spectroscopy of halogen- and hydrogen-boned complexes between cyanoacetaldehyde and hypochlorous acids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 157-163.	3.9	7
96	Some measures for mediating the strengths of halogen bonds with the B-B bond in diborane(4) as an unconventional halogen acceptor. International Journal of Quantum Chemistry, 2014, 114, 128-137.	2.0	9
97	Novel non-covalent interactions involved with the Al ₁₃ M cluster (M = Li, Na, K, Cu, Ag,) Tj ETQq1 10.	.784314 r 1.7	ggT /Overlo
98	Hydrogen bonding involved with superhalogen MX2NY: its influence on the structure and stability of the superhalogen. Molecular Physics, 2014, 112, 1947-1953.	1.7	3
99	Novel CXâ∢Ï€ halogen bonds in complexes of acetylene and its derivatives of Na and MPH3 (M=Cu, Ag, Au) with XCCF (X=Cl, Br, I). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 10-15.	3.9	4
100	Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 271-277.	3.9	33
101	A $\ddot{l}f$ -hole interaction with radical species as electron donors: does single-electron tetrel bonding exist?. Physical Chemistry Chemical Physics, 2014, 16, 11617-11625.	2.8	113
102	Is a MH (M = Be and Mg) radical a better electron donor in halogenâ€hydride interaction?: A theoretical comparison with HMH. International Journal of Quantum Chemistry, 2013, 113, 1293-1298.	2.0	6
103	Effect of metal cations [Li ⁺ , Na ⁺ , K ⁺ , Be ²⁺ , Mg ²⁺ , and Ca ²⁺] on the structure of 2â€(3′â€hydroxy′′â€pyridyl)benzoxazole theoretical investigation. International Journal of Quantum Chemistry, 2013, 113, 1316-1324.	: 2 0	1
104	Influence of cooperativity on the frequency shift of the Ar–H stretch vibration in HArF complexes. Molecular Physics, 2013, 111, 497-504.	1.7	8
105	S···X halogen bonds and H···X hydrogen bonds in H2CS–XY (XY = FF, CIF, CICI, BrF, BrCl, and BrBr) complexes: Cooperativity and solvent effect. Journal of Chemical Physics, 2012, 136, 014302.	3.0	35
106	Enhancing the function, non-additivity, and substitution position effect of the Li atom in the cation–π interaction and its mechanism: anab initiostudy of Li+ ··· Li-substituted benzene complexes. Molecula Physics, 2012, 110, 65-74.	r1.7	5
107	Cooperative and substitution effects in enhancing strengths of halogen bonds in FClâcCNX complexes. Journal of Chemical Physics, 2012, 137, 084314.	3.0	28

Ab initiostudy of synergetic effects of two strong interactions of cation–Ï€ interaction and lithium bond in M+ ·Â·Â·â€‰phenyl lithium ·Â·Â·â€‰N (M = Li, Na, K; N = H2O and NH3) complex. Modecular Phy 457-465.

#	Article	IF	CITATIONS
109	Hydrogen bond and Ïfâ€hole interaction in M ₂ C=S···HCN (M = H, F, Cl, Br, HO, H ₃ C, Quantum Chemistry, 2012, 112, 1491-1498.	,) Tj ETQq1 2.0	l 1 0.784 <mark>31</mark> 13
110	Competitive interaction between halogen and hydrogen bonds in NH ₂ Brâ€HOX (X = F, Cl, and) Tj ETC	<u>29</u> 8 0 0 rg	BT /Overloc
111	Competition between dihydrogen bond and beryllium bond in complexes between HBeH and HArF: A huge blue shift of distant HAr stretch. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 135-140.	3.9	21
112	The single-electron hydrogen, lithium, and halogen bonds with HBe, H2B, and H3C radicals as the electron donor: an ab initio study. Structural Chemistry, 2012, 23, 411-416.	2.0	24
113	Comparative study of XO···CIF and XS···CIF (X = H, CH ₃ , and F) halogenâ€bonded complexes. International Journal of Quantum Chemistry, 2011, 111, 3856-3863.	2.0	1
114	Influence of Hybridization and Cooperativity on the Properties of Au-Bonding Interaction: Comparison with Hydrogen Bonds. Journal of Physical Chemistry A, 2011, 115, 2853-2858.	2.5	26
115	Theoretical study of the interaction between LiNH ₂ and HMgH. International Journal of Quantum Chemistry, 2011, 111, 675-681.	2.0	6
116	Ab initio study of the structure, cooperativity, and vibrational properties in the mixed hydrogenâ€bonded trimers of hydrogen isocyanide and water. International Journal of Quantum Chemistry, 2011, 111, 1072-1080.	2.0	8
117	Interplay between halogen bond and lithium bond in MCNâ€LiCNâ€XCCH (M = H, Li, and Na; X = Cl, Br, and I) complex: The enhancement of halogen bond by a lithium bond. Journal of Computational Chemistry, 2011, 32, 3296-3303.	3.3	61
118	Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids. Physical Chemistry Chemical Physics, 2010, 12, 6837.	2.8	92
119	Ab initio study of the cooperativity between NH···N and NH···C hydrogen bonds in H3N–HNC–HNC complex. Theoretical Chemistry Accounts, 2010, 127, 303-309.	1.4	32
120	Large blue shift of the H–Ar stretching frequency in hydrogen- and halogen-bonded complexes of HArF with dihalogen molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 506-511.	3.9	16
121	A theoretical analysis of the weakly bound complexes HM ··· HXY (M=O and S; XY=CN and NC): comparison with H ₂ M ··· HXY complexes. Molecular Physics, 2010, 108, 1655-1664.	1.7	8
122	Surprising enhancing effect of methyl group on the strength of Oâc XF and Sâc XF (X=Cl and Br) halogen bonds. Journal of Chemical Physics, 2010, 133, 114303.	3.0	29
123	Theoretical study of halogen–hydride halogen bonds in F ₃ CL ··· HM (L=Cl, Br; M=Li, BeH,) Tj ETC	Q ₁₁ , 1 0.78	84314 rg <mark>8T</mark>
124	Theoretical Study of the Interplay between Lithium Bond and Hydrogen Bond in Complexes Involved with HLi and HCN. ChemPhysChem, 2009, 10, 3310-3315.	2.1	38
125	Strong effect of methyl group on the strength of ionic hydrogen bond between C ₂ H ₂ and H ₃ O ⁺ . International Journal of Quantum Chemistry, 2009, 109, 870-875.	2.0	1
126	Comparative study on the nonadditivity of methyl group in lithium bonding and hydrogen bonding. International Journal of Quantum Chemistry, 2009, 109, 1127-1134.	2.0	4

#	Article	IF	CITATIONS
127	Theoretical study on the interlay of hydrogen bonds in the trimers involving HCN and water. International Journal of Quantum Chemistry, 2009, 109, 1396-1402.	2.0	15
128	Ab Initio Study of Lithium-Bonded Complexes with Carbene as an Electron Donor. Journal of Physical Chemistry A, 2009, 113, 14156-14160.	2.5	43
129	<i>Ab initio</i> study of the structure, cooperativity, and vibrational properties of HNC ternary complexes with two HF molecules. Molecular Physics, 2009, 107, 1649-1654.	1.7	2
130	Prediction and characterization of the HMgHâ√LiX (X = H, OH, F, CCH, CN, and NC) complexes: a lithium–hydride lithium bond. Physical Chemistry Chemical Physics, 2009, 11, 2402.	2.8	64
131	Cooperativity between the Halogen Bond and the Hydrogen Bond in H ₃ Nâ<â<â<â<â<â<â<â<â<â<â <td>HF Compl</td> <td>exes 152</td>	HF Compl	exes 152