Fengyu Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2638257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. Journal of Hazardous Materials, 2014, 270, 61-70.	12.4	439
2	Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co x Mn 3â^'x O 4) for Fenton-Like reaction in water. Journal of Hazardous Materials, 2015, 296, 128-137.	12.4	363
3	Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. Journal of Hazardous Materials, 2016, 314, 129-139.	12.4	344
4	Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. Journal of Hazardous Materials, 2015, 297, 224-233.	12.4	337
5	Magnetic ZnFe ₂ O ₄ –C ₃ N ₄ Hybrid for Photocatalytic Degradation of Aqueous Organic Pollutants by Visible Light. Industrial & Engineering Chemistry Research, 2014, 53, 17294-17302.	3.7	215
6	Preparation and characterization of N–S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials, 2008, 156, 135-140.	12.4	193
7	One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. Journal of Hazardous Materials, 2015, 291, 28-37.	12.4	173
8	Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 Heterostructures under natural indoor light. Environmental Science and Pollution Research, 2016, 23, 21833-21845.	5.3	124
9	BiVO ₄ /MIL-101 composite having the synergistically enhanced visible light photocatalytic activity. RSC Advances, 2015, 5, 43473-43479.	3.6	53
10	Preparation of S–N co-doped CoFe ₂ O ₄ @rGO@TiO ₂ nanoparticles and their superior UV-Vis light photocatalytic activities. RSC Advances, 2019, 9, 6152-6162.	3.6	42
11	The excellent photocatalytic synergism of PbBiO ₂ Br/UiO-66-NH ₂ composites via multiple coupling effects. RSC Advances, 2016, 6, 89907-89915.	3.6	24
12	Mass Transfer Performance for Low SO ₂ Absorption into Aqueous <i>N</i> , <i>N</i> ′-Bis(2-hydroxypropyl)piperazine Solution in a Î,-Ring Packed Column. Industrial & Engineering Chemistry Research, 2014, 53, 4462-4468.	3.7	13
13	Magnetic Recoverable F-N Co-Doped ZnFe ₂ O ₄ /C/TiO ₂ Nanocomposites with UV-Vis Light Photocatalytic Activity. Environmental Engineering Science, 2018, 35, 37-45.	1.6	12
14	Graphene oxide-assisted ethanol reflux extraction of total flavonoids from Ginkgo biloba leaves: study of kinetics and mechanism. Chemical Papers, 2020, 74, 971-984.	2.2	8
15	Application of graphene oxide as a catalyst to accelerate extraction of total flavonoids and the hydrolysis of baicalin from Radix scutellaria. Separation and Purification Technology, 2014, 133, 421-428.	7.9	6
16	Modification of abandoned fine blue-coke: optimization study on removal of p-nitrophenol using response surface methodology. RSC Advances, 2016, 6, 13537-13547.	3.6	6
17	The improved photocatalytic capacity derived from AgI-modified mesoporous PANI spherical shell with open pores. Research on Chemical Intermediates, 2019, 45, 2587-2603.	2.7	6
18	Kinetic study of application of graphene oxide as a catalyst to accelerate extraction of total flavonoids from Radix Scutellaria. RSC Advances, 2017, 7, 46894-46899.	3.6	4

#	Article	IF	CITATIONS
19	Synthesis and photocatalytic activity of N-K ₂ Ti ₄ O ₉ /UiO-66 composites. RSC Advances, 2015, 5, 53198-53206.	3.6	2
20	Efficient removal of phenol in aqueous solution by the modified abandoned fine blue-coke: equilibrium, thermodynamic, kinetic, and adsorbent regeneration. Particulate Science and Technology, 0, , 1-10.	2.1	0