Hari Prasad Devkota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2638242/publications.pdf

Version: 2024-02-01

152 papers 3,838 citations

172457 29 h-index 55 g-index

163 all docs

163
docs citations

163 times ranked 4677 citing authors

#	Article	IF	CITATIONS
1	Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 2020, 12, 872.	4.1	389
2	A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 2018, 100, 82-102.	11.4	278
3	Curcumin, the golden spice in treating cardiovascular diseases. Biotechnology Advances, 2020, 38, 107343.	11.7	207
4	Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biological Interactions, 2019, 308, 294-303.	4.0	184
5	Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 2020, 10, 352.	4.0	180
6	Polyphenols in the treatment of autoimmune diseases. Autoimmunity Reviews, 2019, 18, 647-657.	5.8	155
7	Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 2019, 120, 261-267.	2.5	121
8	Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC - Trends in Analytical Chemistry, 2020, 127, 115895.	11.4	104
9	Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends in Food Science and Technology, 2019, 92, 94-110.	15.1	98
10	Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends in Food Science and Technology, 2018, 74, 99-106.	15.1	78
11	Antiâ€inflammatory and anticancer activities of Naringeninâ€loaded liquid crystalline nanoparticles in vitro. Journal of Food Biochemistry, 2021, 45, e13572.	2.9	77
12	Bioactive Compounds and Health Benefits of <i> Artemisia < /i > Species. Natural Product Communications, 2019, 14, 1934578X1985035.</i>	0.5	71
13	Fruits of <scp><i>Terminalia chebula</i></scp> Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytotherapy Research, 2020, 34, 2518-2533.	5.8	66
14	Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Frontiers in Pharmacology, 2020, 11, 41.	3.5	65
15	Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: <i>in vitro</i> tyrosinase inhibition. International Journal of Cosmetic Science, 2008, 30, 353-360.	2.6	62
16	Diabetes and plantâ€derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytotherapy Research, 2021, 35, 223-245.	5.8	60
17	Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 2019, 91, 362-379.	15.1	56
18	Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 5488.	2.5	54

#	Article	IF	Citations
19	Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci, 2021, 3, 44.	3.0	54
20	Dietary Flavonoids in the Management of Huntington's Disease: Mechanism and Clinical Perspective. EFood, 2020, 1, 38-52.	3.1	47
21	Ethnomedicinal Uses of Plant Resources in the Machhapuchchhre Rural Municipality of Kaski District, Nepal. Medicines (Basel, Switzerland), 2019, 6, 69.	1.4	45
22	Combination of essential oils in dairy products: A review of their functions and potential benefits. LWT - Food Science and Technology, 2020, 133, 110116.	5.2	43
23	Anacardium Plants: Chemical, Nutritional Composition and Biotechnological Applications. Biomolecules, 2019, 9, 465.	4.0	42
24	Antioxidant, Antimicrobial, and Anticancer Effects of Anacardium Plants: An Ethnopharmacological Perspective. Frontiers in Endocrinology, 2020, 11, 295.	3.5	41
25	Medicinal Plants and Natural Products Used in Cataract Management. Frontiers in Pharmacology, 2019, 10, 466.	3.5	38
26	Targeting epigenetics in cancer: therapeutic potential of flavonoids. Critical Reviews in Food Science and Nutrition, 2021, 61, 1616-1639.	10.3	38
27	Uncaria tomentosa (Willd. ex Schult.) DC.: A Review on Chemical Constituents and Biological Activities. Applied Sciences (Switzerland), 2020, 10, 2668.	2.5	37
28	Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Seminars in Cancer Biology, 2022, 86, 693-705.	9.6	37
29	CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of Advanced Research, 2022, 40, 207-221.	9.5	37
30	Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytotherapy Research, 2021, 35, 5103-5124.	5.8	34
31	Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants. BMC Complementary and Alternative Medicine, 2018, 18, 282.	3.7	31
32	Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. Applied Sciences (Switzerland), 2020, 10, 4597.	2.5	31
33	Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 389-406.	2.0	27
34	Persicaria hydropiper (L.) Delarbre: A review on traditional uses, bioactive chemical constituents and pharmacological and toxicological activities. Journal of Ethnopharmacology, 2020, 251, 112516.	4.1	27
35	Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules, 2021, 11, 1738.	4.0	27
36	Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and $\langle i \rangle \hat{l} \pm \langle i \rangle$ -glucosidase inhibitory activities. Natural Product Research, 2019, 33, 1670-1673.	1.8	26

#	Article	IF	CITATIONS
37	Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacological Research, 2020, 160, 105085.	7.1	25
38	Saponins Composition of Rhizomes, Taproots, and Lateral Roots of Satsuma-ninjin (<i>Panax) Tj ETQq0 0 0</i>	rgBT /Ove	erlock 10 Tf 5
39	Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics, 2022, 14, 586.	4.5	23
40	Distribution, use, trade and conservation of Paris polyphylla Sm. in Nepal. Global Ecology and Conservation, 2020, 23, e01081.	2.1	22
41	Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology, 2022, 40, 1539-1561.	3.1	22
42	Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 3302-3332.	10.3	21
43	Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chemico-Biological Interactions, 2022, 361, 109960.	4.0	21
44	Chemical composition of Gastrocotyle hispida (Forssk.) bunge and Heliotropium crispum Desf. and evaluation of their multiple in vitro biological potentials. Saudi Journal of Biological Sciences, 2021, 28, 6086-6096.	3.8	19
45	The science of matcha: Bioactive compounds, analytical techniques and biological properties. Trends in Food Science and Technology, 2021, 118, 735-743.	15.1	19
46	Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon, 2022, 8, e08982.	3.2	19
47	Diterpene Esters and Phenolic Compounds from Sapium insigne (ROYLE) BENTH. ex HOOK. fil Chemical and Pharmaceutical Bulletin, 2009, 57, 1289-1291.	1.3	18
48	Anxiolytic activities of Matcha tea powder, extracts, and fractions in mice: Contribution of dopamine D1 receptor- and serotonin 5-HT1A receptor-mediated mechanisms. Journal of Functional Foods, 2019, 59, 301-308.	3.4	18
49	Betaâ€catenin nonâ€canonical pathway: A potential target for inflammatory and hyperproliferative state via expression of transglutaminase 2 in psoriatic skin keratinocyte. Dermatologic Therapy, 2020, 33, e14209.	1.7	17
50	Phenolic Compounds from the Aerial Parts of <i>Diplomorpha canescens</i> . Chemical and Pharmaceutical Bulletin, 2012, 60, 554-556.	1.3	16
51	Cocculus hirsutus (L.) W.Theob. (Menispermaceae): A Review on Traditional Uses, Phytochemistry and Pharmacological Activities. Medicines (Basel, Switzerland), 2020, 7, 69.	1.4	16
52	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
53	Impacts of biomedical hashtag-based Twitter campaign: #DHPSP utilization for promotion of open innovation in digital health, patient safety, and personalized medicine. Current Research in Biotechnology, 2021, 3, 146-153.	3.7	15
54	Anti-Obesity Potential of Ponciri Fructus: Effects of Extracts, Fractions and Compounds on Adipogenesis in 3T3-L1 Preadipocytes. Molecules, 2022, 27, 676.	3.8	15

#	Article	IF	Citations
55	Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-18.	1.2	15
56	Four New Triterpenoid Saponins from the Leaves of <i>Panax japonicus</i> Grown in Southern Miyazaki Prefecture (4). Chemical and Pharmaceutical Bulletin, 2013, 61, 273-278.	1.3	14
57	Two new diacetylene glycosides: bhutkesoside A and B from the roots of <i>Ligusticopsis wallichiana</i> . Natural Product Research, 2016, 30, 1577-1584.	1.8	14
58	Antiâ€neuroinflammatory activities of extract and polymethoxyflavonoids from immature fruit peels of <i>Citrus</i> †Hebesu'. Journal of Food Biochemistry, 2019, 43, e12813.	2.9	14
59	Genus Vanda: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Journal of Ethnopharmacology, 2019, 229, 46-53.	4.1	14
60	Harnessing the therapeutic potential of fisetin and its nanoparticles: Journey so far and road ahead. Chemico-Biological Interactions, 2022, 356, 109869.	4.0	14
61	Flavonoids from the Aerial Parts of Diplomorpha canescens. Chemical and Pharmaceutical Bulletin, 2010, 58, 859-861.	1.3	13
62	Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. European Journal of Pharmacology, 2022, 919, 174821.	3 . 5	13
63	Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. Journal of Food Quality, 2021, 2021, 1-14.	2.6	13
64	N-Acetylcysteine Alleviated the Deltamethrin-Induced Oxidative Cascade and Apoptosis in Liver and Kidney Tissues. International Journal of Environmental Research and Public Health, 2022, 19, 638.	2.6	12
65	Chemical Analysis of Flowers of <i>Bombax ceiba</i> from Nepal. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	11
66	Dhasingreoside: new flavonoid from the stems and leaves of <i>Gaultheria fragrantissima </i> Product Research, 2015, 29, 1442-1448.	1.8	11
67	Antioxidant phenolic compounds from the rhizomes of <i>Astilbe rivularis</i> . Natural Product Research, 2018, 32, 453-456.	1.8	11
68	Phytochemical Screening, Free Radical Scavenging and \hat{l}_{\pm} -Amylase Inhibitory Activities of Selected Medicinal Plants from Western Nepal. Medicines (Basel, Switzerland), 2019, 6, 70.	1.4	11
69	Citrus maxima (Brum.) Merr. (Rutaceae): Bioactive Chemical Constituents and Pharmacological Activities. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	1.2	11
70	Studies on Medicinal Plant Resources of the Himalayas: GC-MS Analysis of Seed Fat of Chyuri (Diploknema butyracea) from Nepal. Pharmacognosy Journal, 2012, 4, 42-44.	0.8	10
71	Nonvolatile Chemical Constituents from the Leaves of Ligusticopsis wallichiana (DC.) Pimenov & Kljuykov and Their Free Radical-Scavenging Activity. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-8.	1.6	10
72	Rhusflavanone and mesuaferrone B: tyrosinase and elastase inhibitory biflavonoids extracted from the stamens of <i>Mesua ferrea</i> L Natural Product Research, 2021, 35, 1024-1028.	1.8	10

#	Article	IF	CITATIONS
73	Culinary herbs and spices in Nepal: A review of their traditional uses, chemical constituents, and pharmacological activities. Ethnobotany Research and Applications, 2021, 21, .	0.6	10
74	Harnessing polyphenol power by targeting eNOS for vascular diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 2093-2118.	10.3	10
75	Bioactive Compounds from Zingiber montanum and Their Pharmacological Activities with Focus on Zerumbone. Applied Sciences (Switzerland), 2021, 11, 10205.	2.5	10
76	Extraction and Isolation of Kaempferol Glycosides from the Leaves and Twigs of Lindera neesiana. Separations, 2019, 6, 10.	2.4	9
77	Genus Blepharis (Acanthaceae): A review of ethnomedicinally used species, and their phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 2021, 265, 113255.	4.1	9
78	Ethnopharmacological uses, phytochemistry and pharmacological activities of Guiera senegalensis J.F. Gmel. (Combretaceae). Journal of Ethnopharmacology, 2021, 267, 113433.	4.1	9
79	Phenolic compounds and ecdysteroids of Diplazium esculentum (Retz.) Sw. (Athyriaceae) from Japan and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2021, 94, 104211.	1.3	9
80	Diarylpentanoids from Diplomorpha canescens and Diplomorpha ganpi. Phytochemistry Letters, 2012, 5, 284-286.	1.2	8
81	Zerumbone and Kaempferol Derivatives from the Rhizomes of Zingiber montanum (J. Koenig) Link ex A. Dietr. from Bangladesh. Separations, 2019, 6, 31.	2.4	8
82	Bioactive phenolic compounds from the flowers of <i>Farfugium japonicum</i> (L.) Kitam. var. <i>giganteum</i> (Siebold et Zucc.) Kitam. (Asteraceae). Natural Product Research, 2022, 36, 4036-4039.	1.8	8
83	Applications of drug-delivery systems targeting inflammasomes in pulmonary diseases. Nanomedicine, 2021, 16, 2407-2410.	3.3	8
84	Optimization of extraction methodologies and purification technologies to recover phytonutrients from food., 2020,, 217-235.		7
85	Phenolic compounds from parasitic Sapria himalayana f. albovinosa and Sapria myanmarensis (Rafflesiaceae) in Myanmar. Biochemical Systematics and Ecology, 2020, 93, 104179.	1.3	7
86	Liensinine Prevents Vascular Inflammation by Attenuating Inflammatory Mediators and Modulating VSMC Function. Applied Sciences (Switzerland), 2021, 11, 386.	2.5	7
87	Catunaregam spinosa (Thunb.) Tirveng: A Review of Traditional Uses, Phytochemistry, Pharmacological Activities, and Toxicological Aspects. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	1.2	7
88	Pilloin 5- <i>O</i> -î²- <scp>D</scp> -Glucopyranoside from the Stems of <i>Diplomorpha ganpi</i> Bioscience, Biotechnology and Biochemistry, 2012, 76, 1555-1557.	1.3	6
89	Flavonoids and saponins from <i>Zizyphus incurva < /i>. Natural Product Research, 2013, 27, 697-701.</i>	1.8	6
90	Phenolic compounds from the flowers of Nepalese medicinal plant <i>Aconogonon molle </i> and their DPPH free radical-scavenging activities. Natural Product Research, 2014, 28, 2208-2210.	1.8	6

#	Article	IF	Citations
91	Simalin A and B: Two new aromatic compounds from the stem bark of Bombax ceiba. Phytochemistry Letters, 2014, 7, 26-29.	1.2	6
92	Chemical Constituents From the Flowers of Aloe arborescens. Natural Product Communications, 2019, 14, 1934578X1984413.	0.5	6
93	Transthyretin Amyloid Fibril Disrupting Activities of Extracts and Fractions from Juglans mandshurica Maxim. var. cordiformis (Makino) Kitam Molecules, 2019, 24, 500.	3.8	6
94	Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities. Medicines (Basel, Switzerland), 2019, 6, 113.	1.4	6
95	Anti-Adipogenic and Anti-Inflammatory Activities of (â^')-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl. Molecules, 2020, 25, 1337.	3.8	6
96	A Review of Chemistry and Pharmacology of Piperidine Alkaloids of Pinus and Related Genera. Current Pharmaceutical Biotechnology, 2022, 23, 1132-1141.	1.6	6
97	Flavonoids from the leaves and twigs of Lindera sericea (Seibold et Zucc.) Blume var. sericea (Lauraceae) from Japan and their bioactivities. Functional Foods in Health and Disease, 2021, 11, 34.	0.6	6
98	\hat{l}_{\pm} -Amylase Inhibitory Activity of Catunaregam spinosa (Thunb.) Tirveng.: In Vitro and In Silico Studies. BioMed Research International, 2021, 2021, 1-11.	1.9	6
99	A new phenolic compound, 4-dehydrochebulic acid-1,6-dimethyl ester from Sapium insigne leaves. Journal of Natural Medicines, 2010, 64, 191-193.	2.3	5
100	Diplomorphanins A and B: New $\langle i \rangle C \langle i \rangle$ -Methyl Flavonoids from $\langle i \rangle$ Diplomorpha canescens $\langle i \rangle$. Chemical and Pharmaceutical Bulletin, 2013, 61, 242-244.	1.3	5
101	Thotneosides A, B and C: Potent Antioxidants from Nepalese Crude Drug, Leaves of <i>Aconogonon molle</i> . Chemical and Pharmaceutical Bulletin, 2014, 62, 191-195.	1.3	5
102	Chemical constituents from the aerial parts of Impatiens hypophylla Makino var. hypophylla. Biochemical Systematics and Ecology, 2019, 83, 10-12.	1.3	5
103	St. John's Wort (Hypericum perforatum). , 2019, , 415-432.		5
104	Cold pressed clove (Syzygium aromaticum) oil. , 2020, , 273-276.		5
105	Improvement of Pharmaceutical Properties of Zerumbone, a Multifunctional Compound, Using Cyclodextrin Derivatives. Chemical and Pharmaceutical Bulletin, 2020, 68, 1117-1120.	1.3	5
106	Traditional uses, phytochemistry, and pharmacology of genus <i>Vitex</i> (Lamiaceae). Phytotherapy Research, 2022, 36, 571-671.	5.8	5
107	Phenolic compounds from the leaves of Phegopteris decursivepinnata (H.C. Hall) Fée. Biochemical Systematics and Ecology, 2018, 78, 81-83.	1.3	4
108	Chyuri (Diploknema butyracea) Butter. , 2019, , 281-289.		4

#	Article	IF	CITATIONS
109	Free Radical Scavenging Activity and Chemical Constituents of the Unripe Fruits of Spondias pinnata (L.f.) Kurz. from Nepal. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 0, , 54-60.	0.1	4
110	Amentoflavone and Kaempferol Glycosides from the Aerial Parts of Cissampelos pareira. Nepal Journal of Biotechnology, 2017, 5, 1-4.	0.4	3
111	Flavonoids from the Flowers of <i>Citrus</i> â€~Hebesu'. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
112	Phenolic Acid Derivatives, Flavonoids and Other Bioactive Compounds from the Leaves of Cardiocrinum cordatum (Thunb.) Makino (Liliaceae). Plants, 2021, 10, 320.	3.5	3
113	Edible and Medicinal Pteridophytes of Nepal: A Review. Ethnobotany Research and Applications, 2021, 22, .	0.6	3
114	Tea (Catechins Including (â^')-Epigallocatechin-3-gallate) and Cancer. Food Bioactive Ingredients, 2021, , 451-466.	0.4	3
115	Inhibitory effects of plant extracts and in Silico screening of the bioactive compounds against α-glucosidase. South African Journal of Botany, 2021, 143, 330-343.	2.5	3
116	Antioxidant Phenolic Constituents from the Leaves of Acer ginnala var aidzuense. Journal of Natural Remedies, 2017, 17, 9-12.	0.3	3
117	Flavone C-glycosides from Lychnis senno and their antioxidative activity. Natural Product Communications, 2013, 8, 1413-4.	0.5	3
118	Anthocyanins and flavonols from the blue flowers of six Meconopsis species in Bhutan. Biochemical Systematics and Ecology, 2019, 86, 103925.	1.3	2
119	Flavonoid glycosides from the leaves of Aphananthe aspera (Thunb.) Planch. (Cannabaceae) and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2019, 83, 112-113.	1.3	2
120	Analysis of glucosinolates., 2020,, 651-661.		2
121	Plant-Based Bioactive Natural Products: Insights into Molecular Mechanisms of Action. Applied Sciences (Switzerland), 2021, 11, 10220.	2.5	2
122	A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. South African Journal of Botany, 2022, 149, 944-962.	2.5	2
123	Editorial: Pharmacology of Plant Polyphenols in Human Health and Diseases. Frontiers in Pharmacology, 0, 13, .	3.5	2
124	Flavone C-Glycosides from Lychnis senno and their Antioxidative Activity. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	1
125	Biflavonoids, Lignans, and Related Compounds from the Roots of <i>Diplomorpha canescens</i> Helvetica Chimica Acta, 2015, 98, 704-709.	1.6	1
126	Chemical Constituents from the Roots, Stems and Leaves of Diplomorpha sikokiana. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1

#	Article	IF	Citations
127	Phenolic Compounds as Potent Free Radical Scavenging and Enzyme Inhibitory Components From the Leaves of <i>Guiera senegalensis</i> Natural Product Communications, 2019, 14, 1934578X1985736.	0.5	1
128	Rumex nepalensis Spreng. Rumex hastatus D. Don Rumex longifolius DC. Polygonaceae. Ethnobotany of Mountain Regions, 2021, , 1-19.	0.0	1
129	Epigenetic Therapy as a Potential Approach for Targeting Oxidative Stress–Induced Non-Small-Cell Lung Cancer. , 2021, , 1-16.		1
130	Epigenetic Therapy as a Potential Approach for Targeting Oxidative Stress–Induced Non-small-Cell Lung Cancer. , 2022, , 1545-1560.		1
131	Flavonoids and anthocyanins from the leaves of the Pride of Burma (Amherstia nobilis). Biochemical Systematics and Ecology, 2022, 101, 104391.	1.3	1
132	Mandatory Vaccination Against COVID-19: Twitter Poll Analysis on Public Health Opinion. JMIR Formative Research, 2022, 6, e35754.	1.4	1
133	Environmental Challenges for Himalayan Medicinal Plants. Environmental Challenges and Solutions, 2022, , 29-47.	0.9	1
134	Bijayasaline: A New <i>C</i> -Glucosyl-î±-hydroxydihydrochalcone from the Heartwood of Bijayasal <i>(Pterocarpus marsupium)</i> . Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	0
135	Flavonoids from three Wild Glycine Species in Japan and Taiwan. Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	0
136	Curcuma aromatica Salisb. Curcuma longa L. Curcuma zedoaria (Christm.) Roscoe Zingiberaceae. Ethnobotany of Mountain Regions, 2021, , 1-12.	0.0	0
137	Curcuma aromatica Salisb. Curcuma longa L. Curcuma zedoaria (Christm.) Roscoe Zingiberaceae. Ethnobotany of Mountain Regions, 2021, , 1-12.	0.0	0
138	Rumex nepalensis Spreng. Rumex hastatus D. Don Rumex longifolius DC. Polygonaceae. Ethnobotany of Mountain Regions, 2021, , 1735-1753.	0.0	0
139	Ligusticopsis wallichiana (DC.) Pimenov & Diuykov Selinum vaginatum C.B. Clarke Apiaceae. Ethnobotany of Mountain Regions, 2021, , 1-8.	0.0	0
140	Curcuma aromatica Salisb. Curcuma longa L. Curcuma zedoaria (Christm.) Roscoe Zingiberaceae. Ethnobotany of Mountain Regions, 2021, , 649-660.	0.0	0
141	Rumex nepalensis Spreng. Rumex hastatus D. Don Rumex longifolius DC. Polygonaceae. Ethnobotany of Mountain Regions, 2021, , 1-19.	0.0	0
142	Ligusticopsis wallichiana (DC.) Pimenov & Kljuykov Selinum vaginatum C.B. Clarke Apiaceae. Ethnobotany of Mountain Regions, 2021, , 1197-1204.	0.0	0
143	Flavonoids From the Flowers and Leaves of the Himalayan <i>Megacodon stylophorus</i> (Gentianaceae). Natural Product Communications, 2021, 16, 1934578X2199226.	0.5	0
144	Flavonoids from the leaves and flowers of the Himalayan Cathcartia villosa (Papaveraceae). Biochemical Systematics and Ecology, 2021, 96, 104267.	1.3	0

#	Article	IF	CITATIONS
145	Orchids of Genus Bletilla: Traditional Uses, Phytochemistry, Bioactivities, and Commercial Importance. Reference Series in Phytochemistry, 2021, , 1-18.	0.4	0
146	Nobiletin., 2021,, 185-196.		0
147	Stabilizers (Including pH Control Agents and Phosphates). , 2020, , 233-245.		O
148	Phenolic Compounds from the Aerial Parts of Adenophora triphylla (Thunb.) A. DC. var. triphylla and their Free Radical Scavenging Activity. Nepal Journal of Biotechnology, 2020, 8, 12-16.	0.4	0
149	Traditional uses, phytochemistry and biological activities of Roscoea purpurea Sm Ethnobotany Research and Applications, 2021, 22, .	0.6	0
150	Orchids of Genus Bletilla: Traditional Uses, Phytochemistry, Bioactivities, and Commercial Importance. Reference Series in Phytochemistry, 2022, , 573-590.	0.4	0
151	Orchids of Genus Vanda: Traditional Uses, Phytochemistry, Bioactivities, and Commercial Importance. Reference Series in Phytochemistry, 2022, , 591-605.	0.4	0
152	Health-promoting activities of clove (Syzygium aromaticum). , 2022, , 195-201.		0