Anthony Banks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2638187/publications.pdf

Version: 2024-02-01

48 papers

6,554 citations

34 h-index 49 g-index

52 all docs 52 docs citations

times ranked

52

7575 citing authors

#	Article	IF	Citations
1	Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nature Protocols, 2022, 17, 1073-1096.	12.0	14
2	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	12.6	90
3	Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience, 2021, 24, 1035-1045.	14.8	98
4	Real-Time UV Measurement With a Sun Protection System for Warning Young Adults About Sunburn: Prospective Cohort Study. JMIR MHealth and UHealth, 2021, 9, e25895.	3.7	6
5	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	10.3	55
6	Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nature Biotechnology, 2021, 39, 1228-1238.	17.5	163
7	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	27.5	114
8	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	12.8	83
9	Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nature Communications, 2020, 11, 5990.	12.8	144
10	Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Science Advances, 2020, 6, .	10.3	40
11	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	10.3	87
12	Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Science Translational Medicine, 2020, 12, .	12.4	93
13	Sun exposure reduction by melanoma survivors with wearable sensor providing real-time UV exposure and daily text messages with structured goal setting. Archives of Dermatological Research, 2020, 313, 685-694.	1.9	10
14	Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. Npj Digital Medicine, 2020, 3, 29.	10.9	26
15	Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine, 2020, 26, 418-429.	30.7	272
16	Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21427-21437.	7.1	110
17	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	12.6	521
18	Miniaturized, light-adaptive, wireless dosimeters autonomously monitor exposure to electromagnetic radiation. Science Advances, 2019, 5, eaay2462.	10.3	21

#	Article	IF	Citations
19	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, $2018,10,.$	12.4	247
20	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	14.6	36
21	Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nature Electronics, 2018, 1, 652-660.	26.0	157
22	Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. Science Translational Medicine, 2018, 10, .	12.4	91
23	Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine, 2018, 24, 1830-1836.	30.7	331
24	Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures. PLoS ONE, 2018, 13, e0190233.	2.5	43
25	UV Sensors: Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities (Adv. Funct. Mater. 2/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
26	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	8.1	323
27	Dry Transient Electronic Systems by Use of Materials that Sublime. Advanced Functional Materials, 2017, 27, 1606008.	14.9	34
28	Transient Electronics: Dry Transient Electronic Systems by Use of Materials that Sublime (Adv. Funct.) Tj ETQq0 C	0 rgBT /C	verlock 10 T
29	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	q1 ₁₄ .9.78	43 ₄ 4 rgBT
30	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain, 2017, 158, 2108-2116.	4.2	93
31	Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities. Advanced Functional Materials, 2017, 27, 1604465.	14.9	135
32	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	14.9	248
33	Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging for Health Monitoring. Microsystems and Nanosystems, 2016, , 193-205.	0.1	2
34	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.	7.1	139
35	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€√Ferm Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	14.9	53
36	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	12.4	933

#	Article	IF	CITATIONS
37	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	14.9	0
38	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	10.3	336
39	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	14.9	6
40	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	14.9	3
41	Wireless Microfluidic Systems for Programmed, Functional Transformation of Transient Electronic Devices. Advanced Functional Materials, 2015, 25, 5100-5106.	14.9	37
42	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	14.9	148
43	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	14.9	116
44	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	12.6	745
45	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	10.0	8
46	Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. Journal of Neural Engineering, 2015, 12, 056002.	3.5	64
47	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	14.9	41
48	Epidermal Electronics with Advanced Capabilities in Near-Field Communication. Small, 2015, 11, 906-912.	10.0	224