Martin Empting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635571/publications.pdf

Version: 2024-02-01

201674 197818 2,611 66 27 49 h-index citations g-index papers 73 73 73 2987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chemical Biology, 2022, 17, 361-375.	3.4	23
2	Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. European Journal of Medicinal Chemistry, 2022, 231, 114148.	5.5	3
3	Transferring Microclusters of <i>P. aeruginosa</i> Biofilms to the Air–Liquid Interface of Bronchial Epithelial Cells for Repeated Deposition of Aerosolized Tobramycin. ACS Infectious Diseases, 2022, 8, 137-149.	3.8	8
4	A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Science, 2021, 8, e2004369.	11.2	34
5	KSHV-specific antivirals targeting the protein $\hat{a} \in DNA$ interaction of the latency-associated nuclear antigen. Future Medicinal Chemistry, 2021, 13, 1141-1151.	2.3	1
6	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	30.2	439
7	Divergent synthesis and biological evaluation of 2-(trifluoromethyl)pyridines as virulence-attenuating inverse agonists targeting PqsR. European Journal of Medicinal Chemistry, 2021, 226, 113797.	5.5	5
8	Flexible Fragment Growing Boosts Potency of Quorumâ€5ensing Inhibitors against <i>Pseudomonas aeruginosa</i> Virulence. ChemMedChem, 2020, 15, 188-194.	3.2	23
9	Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB Journal, 2020, 34, 316-332.	0.5	41
10	Micro-rheological properties of lung homogenates correlate with infection severity in a mouse model of Pseudomonas aeruginosa lung infection. Scientific Reports, 2020, 10, 16502.	3.3	17
11	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of ⟨i⟩P.â€aeruginosa⟨ i⟩ Biofilm Infections. Angewandte Chemie - International Edition, 2020, 59, 10292-10296.	13.8	41
12	Hit-to-lead optimization of a latency-associated nuclear antigen inhibitor against Kaposi's sarcoma-associated herpesvirus infections. European Journal of Medicinal Chemistry, 2020, 202, 112525.	5.5	7
13	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angewandte Chemie, 2020, 132, 10378-10382.	2.0	1
14	Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus. ACS Chemical Biology, 2020, 15, 388-395.	3.4	11
15	Titelbild: Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of <i>P.â€aeruginosa</i> Biofilm Infections (Angew. Chem. 26/2020). Angewandte Chemie, 2020, 132, 10285-10285.	2.0	0
16	Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library. Methods in Molecular Biology, 2020, 2070, 95-113.	0.9	1
17	Hit evaluation of an \hat{l}_{\pm} -helical peptide: Ala-scan, truncation and sidechain-to-sidechain macrocyclization of an RNA polymerase Inhibitor. Biological Chemistry, 2019, 400, 333-342.	2.5	1
18	Synthesis of New Cyclomarin Derivatives and Their Biological Evaluation towards <i>Mycobacterium Tuberculosis</i> and <i>Plasmodium Falciparum</i> Chemistry - A European Journal, 2019, 25, 8894-8902.	3.3	21

#	Article	IF	CITATIONS
19	Fragment-Based Discovery of a Qualified Hit Targeting the Latency-Associated Nuclear Antigen of the Oncogenic Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8. Journal of Medicinal Chemistry, 2019, 62, 3924-3939.	6.4	28
20	Concepts and Core Principles of Fragment-Based Drug Design. Molecules, 2019, 24, 4309.	3.8	115
21	Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents. Pharmaceutical Research, 2019, 36, 22.	3.5	15
22	Trendbericht Biochemie 2017: Zellpenetration. Nachrichten Aus Der Chemie, 2018, 66, 294-298.	0.0	1
23	Trendbericht Biochemie 2017: Pathoblocker - Ein neues Konzept gegen bakterielle Infektionen. Nachrichten Aus Der Chemie, 2018, 66, 290-294.	0.0	0
24	The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to Structural Flexibility of the FabHâ€like 2â€Heptylâ€3â€hydroxyâ€4(1 H)â€quinolone (PQS) Biosynthesis Enzyme PqsBC. ChemBioChem, 20 1531-1544.	1 2, d9,	17
25	Shark attack: Haiantikörper für Biomedizin und Biotechnologie. BioSpektrum, 2018, 24, 142-145.	0.0	0
26	Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods in Molecular Biology, 2018, 1701, 147-167.	0.9	15
27	Targeting the <i>Pseudomonas</i> quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein Journal of Organic Chemistry, 2018, 14, 2627-2645.	2.2	61
28	<i>In Vitro</i> Model of the Gram-Negative Bacterial Cell Envelope for Investigation of Anti-Infective Permeation Kinetics. ACS Infectious Diseases, 2018, 4, 1188-1196.	3.8	20
29	Tackling <i>Pseudomonas aeruginosa</i> Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chemical Biology, 2018, 13, 2449-2455.	3.4	24
30	Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. Topics in Medicinal Chemistry, 2017, , 185-210.	0.8	10
31	Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Scientific Reports, 2017, 7, 9676.	3.3	34
32	Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials. ChemMedChem, 2017, 12, 1616-1626.	3.2	4
33	Camelid and shark single domain antibodies: structural features and therapeutic potential. Current Opinion in Structural Biology, 2017, 45, 10-16.	5.7	165
34	In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment. Frontiers in Microbiology, 2017, 8, 924.	3.5	49
35	An Apoptosisâ€Inducing Peptidic Heptad That Efficiently Clusters Death Receptorâ€5. Angewandte Chemie - International Edition, 2016, 55, 5085-5089.	13.8	25
36	Dissecting the Multiple Roles of PqsE in <i>Pseudomonas aeruginosa</i> Virulence by Discovery of Small Tool Compounds. ACS Chemical Biology, 2016, 11, 1755-1763.	3.4	38

#	Article	IF	CITATIONS
37	Structure–Activity Relationships of 2â€Sufonylpyrimidines as Quorumâ€Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release of <i>Pseudomonas aeruginosa</i> . ChemMedChem, 2016, 11, 2522-2533.	3.2	24
38	Discovery of the first small-molecule CsrA–RNA interaction inhibitors using biophysical screening technologies. Future Medicinal Chemistry, 2016, 8, 931-947.	2.3	33
39	Novel Strategies for the Treatment of <i>Pseudomonas aeruginosa </i> Infections. Journal of Medicinal Chemistry, 2016, 59, 5929-5969.	6.4	215
40	Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against <i>Pseudomonas aeruginosa</i> Infections. ACS Chemical Biology, 2016, 11, 1279-1286.	3.4	61
41	Single-domain antibodies for biomedical applications. Immunopharmacology and Immunotoxicology, 2016, 38, 21-28.	2.4	64
42	Engineering a Constrained Peptidic Scaffold towards Potent and Selective Furin Inhibitors. ChemBioChem, 2015, 16, 2441-2444.	2.6	26
43	Synthetic Quorum Sensing Inhibitors (QSIs) Blocking Receptor Signaling or Signal Molecule Biosynthesis in Pseudomonas aeruginosa. , 2015, , 303-317.		2
44	The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope. Marine Biotechnology, 2015, 17, 386-392.	2.4	17
45	Mild and Catalyst-Free Microwave-Assisted Synthesis of 4,6-Disubstituted 2-Methylthiopyrimidines – Exploiting Tetrazole as an Efficient Leaving Group. Synlett, 2015, 26, 2606-2610.	1.8	5
46	Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs, 2015, 7, 15-25.	5.2	102
47	Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 2015, 96, 14-21.	5.5	39
48	Towards the evaluation in an animal disease model: Fluorinated $17\hat{1}^2$ -HSD1 inhibitors showing strong activity towards both the human and the rat enzyme. European Journal of Medicinal Chemistry, 2015, 103, 56-68.	5.5	10
49	Catechol-based substrates of chalcone synthase as a scaffold for novel inhibitors of PqsD. European Journal of Medicinal Chemistry, 2015, 90, 351-359.	5.5	34
50	Composing compound libraries for hit discovery – rationality-driven preselection or random choice by structural diversity?. Future Medicinal Chemistry, 2014, 6, 2057-2072.	2.3	15
51	Potent inhibitors of human matriptaseâ€1 based on the scaffold of sunflower trypsin inhibitor. Journal of Peptide Science, 2014, 20, 415-420.	1.4	42
52	Microwave-Assisted Synthesis of 4-Substituted 2-Methylthiopyrimidines. Synlett, 2014, 25, 935-938.	1.8	5
53	From <i>in vitro</i> to <i>in cellulo</i> : structure–activity relationship of (2-nitrophenyl)methanol derivatives as inhibitors of PqsD in <i>Pseudomonas aeruginosa</i> . Organic and Biomolecular Chemistry, 2014, 12, 6094-6104.	2.8	38
54	Mechanistic details for anthraniloyl transfer in PqsD: the initial step in HHQ biosynthesis. Journal of Molecular Modeling, 2014, 20, 2255.	1.8	8

#	Article	lF	CITATION
55	Inhibition of $17\hat{1}^2$ -HSD1: SAR of bicyclic substituted hydroxyphenylmethanones and discovery of new potent inhibitors with thioether linker. European Journal of Medicinal Chemistry, 2014, 82, 394-406.	5.5	9
56	Shark Attack: High affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. Journal of Biotechnology, 2014, 191, 236-245.	3.8	74
57	Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors. PLoS ONE, 2014, 9, e87851.	2.5	43
58	PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. Chemical Communications, 2013, 49, 7839.	4.1	29
59	Combinatorial tuning of peptidic drug candidates: high-affinity matriptase inhibitors through incremental structure-guided optimization. Organic and Biomolecular Chemistry, 2013, 11, 1848.	2.8	48
60	Biochemical and Biophysical Analysis of a Chiral PqsD Inhibitor Revealing Tight-binding Behavior and Enantiomers with Contrary Thermodynamic Signatures. ACS Chemical Biology, 2013, 8, 2794-2801.	3.4	24
61	From pico to nano: biofunctionalization of cube-octameric silsesquioxanes by peptides and miniproteins. Organic and Biomolecular Chemistry, 2012, 10, 6287.	2.8	23
62	Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redox-stable SFTI-1 variants at near physiological pH. Organic and Biomolecular Chemistry, 2012, 10, 7753.	2.8	25
63	Braces for the Peptide Backbone: Insights into Structure–Activity Relationships of Protease Inhibitor Mimics with Locked Amide Conformations. Angewandte Chemie - International Edition, 2012, 51, 3708-3712.	13.8	62
64	"Triazole Bridge― Disulfideâ€Bond Replacement by Rutheniumâ€Catalyzed Formation of 1,5â€Disubstituted 1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2011, 50, 5207-5211.	13.8	112
65	Towards click bioconjugations on cube-octameric silsesquioxane scaffolds. Organic and Biomolecular Chemistry, 2010, 8, 2212.	2.8	49
66	Application of copper(i) catalyzed azide–alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates. Organic and Biomolecular Chemistry, 2009, 7, 4177.	2.8	19