Martin Empting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	30.2	439
2	Novel Strategies for the Treatment of <i>Pseudomonas aeruginosa</i> Infections. Journal of Medicinal Chemistry, 2016, 59, 5929-5969.	6.4	215
3	Camelid and shark single domain antibodies: structural features and therapeutic potential. Current Opinion in Structural Biology, 2017, 45, 10-16.	5.7	165
4	Concepts and Core Principles of Fragment-Based Drug Design. Molecules, 2019, 24, 4309.	3.8	115
5	"Triazole Bridge†Disulfideâ€Bond Replacement by Rutheniumâ€Catalyzed Formation of 1,5â€Disubstituted 1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2011, 50, 5207-5211.	13.8	112
6	Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs, 2015, 7, 15-25.	5.2	102
7	Shark Attack: High affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. Journal of Biotechnology, 2014, 191, 236-245.	3.8	74
8	Single-domain antibodies for biomedical applications. Immunopharmacology and Immunotoxicology, 2016, 38, 21-28.	2.4	64
9	Braces for the Peptide Backbone: Insights into Structure–Activity Relationships of Protease Inhibitor Mimics with Locked Amide Conformations. Angewandte Chemie - International Edition, 2012, 51, 3708-3712.	13.8	62
10	Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against <i>Pseudomonas aeruginosa</i> Infections. ACS Chemical Biology, 2016, 11, 1279-1286.	3.4	61
11	Targeting the <i>Pseudomonas</i> quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein Journal of Organic Chemistry, 2018, 14, 2627-2645.	2.2	61
12	Towards click bioconjugations on cube-octameric silsesquioxane scaffolds. Organic and Biomolecular Chemistry, 2010, 8, 2212.	2.8	49
13	In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment. Frontiers in Microbiology, 2017, 8, 924.	3.5	49
14	Combinatorial tuning of peptidic drug candidates: high-affinity matriptase inhibitors through incremental structure-guided optimization. Organic and Biomolecular Chemistry, 2013, 11, 1848.	2.8	48
15	Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors. PLoS ONE, 2014, 9, e87851.	2.5	43
16	Potent inhibitors of human matriptaseâ€1 based on the scaffold of sunflower trypsin inhibitor. Journal of Peptide Science, 2014, 20, 415-420.	1.4	42
17	Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB Journal, 2020, 34, 316-332.	0.5	41
18	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of <i>P.â€aeruginosa</i> Biofilm Infections. Angewandte Chemie - International Edition, 2020, 59, 10292-10296.	13.8	41

MARTIN EMPTING

#	Article	IF	CITATIONS
19	Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 2015, 96, 14-21.	5.5	39
20	From <i>in vitro</i> to <i>in cellulo</i> : structure–activity relationship of (2-nitrophenyl)methanol derivatives as inhibitors of PqsD in <i>Pseudomonas aeruginosa</i> . Organic and Biomolecular Chemistry, 2014, 12, 6094-6104.	2.8	38
21	Dissecting the Multiple Roles of PqsE in <i>Pseudomonas aeruginosa</i> Virulence by Discovery of Small Tool Compounds. ACS Chemical Biology, 2016, 11, 1755-1763.	3.4	38
22	Catechol-based substrates of chalcone synthase as a scaffold for novel inhibitors of PqsD. European Journal of Medicinal Chemistry, 2015, 90, 351-359.	5.5	34
23	Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Scientific Reports, 2017, 7, 9676.	3.3	34
24	A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Science, 2021, 8, e2004369.	11.2	34
25	Discovery of the first small-molecule CsrA–RNA interaction inhibitors using biophysical screening technologies. Future Medicinal Chemistry, 2016, 8, 931-947.	2.3	33
26	PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. Chemical Communications, 2013, 49, 7839.	4.1	29
27	Fragment-Based Discovery of a Qualified Hit Targeting the Latency-Associated Nuclear Antigen of the Oncogenic Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8. Journal of Medicinal Chemistry, 2019, 62, 3924-3939.	6.4	28
28	Engineering a Constrained Peptidic Scaffold towards Potent and Selective Furin Inhibitors. ChemBioChem, 2015, 16, 2441-2444.	2.6	26
29	Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redox-stable SFTI-1 variants at near physiological pH. Organic and Biomolecular Chemistry, 2012, 10, 7753.	2.8	25
30	An Apoptosisâ€Inducing Peptidic Heptad That Efficiently Clusters Death Receptorâ€5. Angewandte Chemie - International Edition, 2016, 55, 5085-5089.	13.8	25
31	Biochemical and Biophysical Analysis of a Chiral PqsD Inhibitor Revealing Tight-binding Behavior and Enantiomers with Contrary Thermodynamic Signatures. ACS Chemical Biology, 2013, 8, 2794-2801.	3.4	24
32	Structure–Activity Relationships of 2â€5ufonylpyrimidines as Quorumâ€5ensing Inhibitors to Tackle Biofilm Formation and eDNA Release of <i>Pseudomonas aeruginosa</i> . ChemMedChem, 2016, 11, 2522-2533.	3.2	24
33	Tackling <i>Pseudomonas aeruginosa</i> Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chemical Biology, 2018, 13, 2449-2455.	3.4	24
34	From pico to nano: biofunctionalization of cube-octameric silsesquioxanes by peptides and miniproteins. Organic and Biomolecular Chemistry, 2012, 10, 6287.	2.8	23
35	Flexible Fragment Growing Boosts Potency of Quorumâ€Sensing Inhibitors against <i>Pseudomonas aeruginosa</i> Virulence. ChemMedChem, 2020, 15, 188-194.	3.2	23
36	First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chemical Biology, 2022, 17, 361-375.	3.4	23

MARTIN EMPTING

#	Article	IF	CITATIONS
37	Synthesis of New Cyclomarin Derivatives and Their Biological Evaluation towards <i>Mycobacterium Tuberculosis</i> and <i>Plasmodium Falciparum</i> . Chemistry - A European Journal, 2019, 25, 8894-8902.	3.3	21
38	<i>In Vitro</i> Model of the Gram-Negative Bacterial Cell Envelope for Investigation of Anti-Infective Permeation Kinetics. ACS Infectious Diseases, 2018, 4, 1188-1196.	3.8	20
39	Application of copper(i) catalyzed azide–alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates. Organic and Biomolecular Chemistry, 2009, 7, 4177.	2.8	19
40	The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope. Marine Biotechnology, 2015, 17, 386-392.	2.4	17
41	The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to Structural Flexibility of the FabHâ€like 2â€Heptylâ€3â€hydroxyâ€4(1 H)â€quinolone (PQS) Biosynthesis Enzyme PqsBC. ChemBioChem, 20 1531-1544.	18,d9,	17
42	Micro-rheological properties of lung homogenates correlate with infection severity in a mouse model of Pseudomonas aeruginosa lung infection. Scientific Reports, 2020, 10, 16502.	3.3	17
43	Composing compound libraries for hit discovery – rationality-driven preselection or random choice by structural diversity?. Future Medicinal Chemistry, 2014, 6, 2057-2072.	2.3	15
44	Generation of Semi-Synthetic Shark IgNAR Single-Domain Antibody Libraries. Methods in Molecular Biology, 2018, 1701, 147-167.	0.9	15
45	Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents. Pharmaceutical Research, 2019, 36, 22.	3.5	15
46	Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus. ACS Chemical Biology, 2020, 15, 388-395.	3.4	11
47	Towards the evaluation in an animal disease model: Fluorinated 17β-HSD1 inhibitors showing strong activity towards both the human and the rat enzyme. European Journal of Medicinal Chemistry, 2015, 103, 56-68.	5.5	10
48	Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. Topics in Medicinal Chemistry, 2017, , 185-210.	0.8	10
49	Inhibition of 17β-HSD1: SAR of bicyclic substituted hydroxyphenylmethanones and discovery of new potent inhibitors with thioether linker. European Journal of Medicinal Chemistry, 2014, 82, 394-406.	5.5	9
50	Mechanistic details for anthraniloyl transfer in PqsD: the initial step in HHQ biosynthesis. Journal of Molecular Modeling, 2014, 20, 2255.	1.8	8
51	Transferring Microclusters of <i>P. aeruginosa</i> Biofilms to the Air–Liquid Interface of Bronchial Epithelial Cells for Repeated Deposition of Aerosolized Tobramycin. ACS Infectious Diseases, 2022, 8, 137-149.	3.8	8
52	Hit-to-lead optimization of a latency-associated nuclear antigen inhibitor against Kaposi's sarcoma-associated herpesvirus infections. European Journal of Medicinal Chemistry, 2020, 202, 112525.	5.5	7
53	Microwave-Assisted Synthesis of 4-Substituted 2-Methylthiopyrimidines. Synlett, 2014, 25, 935-938.	1.8	5
54	Mild and Catalyst-Free Microwave-Assisted Synthesis of 4,6-Disubstituted 2-Methylthiopyrimidines – Exploiting Tetrazole as an Efficient Leaving Group. Synlett, 2015, 26, 2606-2610.	1.8	5

MARTIN EMPTING

#	Article	IF	CITATIONS
55	Divergent synthesis and biological evaluation of 2-(trifluoromethyl)pyridines as virulence-attenuating inverse agonists targeting PqsR. European Journal of Medicinal Chemistry, 2021, 226, 113797.	5.5	5
56	Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials. ChemMedChem, 2017, 12, 1616-1626.	3.2	4
57	Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. European Journal of Medicinal Chemistry, 2022, 231, 114148.	5.5	3
58	Synthetic Quorum Sensing Inhibitors (QSIs) Blocking Receptor Signaling or Signal Molecule Biosynthesis in Pseudomonas aeruginosa. , 2015, , 303-317.		2
59	Trendbericht Biochemie 2017: Zellpenetration. Nachrichten Aus Der Chemie, 2018, 66, 294-298.	0.0	1
60	Hit evaluation of an α-helical peptide: Ala-scan, truncation and sidechain-to-sidechain macrocyclization of an RNA polymerase Inhibitor. Biological Chemistry, 2019, 400, 333-342.	2.5	1
61	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angewandte Chemie, 2020, 132, 10378-10382.	2.0	1
62	KSHV-specific antivirals targeting the protein–DNA interaction of the latency-associated nuclear antigen. Future Medicinal Chemistry, 2021, 13, 1141-1151.	2.3	1
63	Restriction-Free Construction of a Phage-Presented Very Short Macrocyclic Peptide Library. Methods in Molecular Biology, 2020, 2070, 95-113.	0.9	1
64	Trendbericht Biochemie 2017: Pathoblocker - Ein neues Konzept gegen bakterielle Infektionen. Nachrichten Aus Der Chemie, 2018, 66, 290-294.	0.0	0
65	Shark attack: Haiantikörper für Biomedizin und Biotechnologie. BioSpektrum, 2018, 24, 142-145.	0.0	0
66	Titelbild: Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of <i>P.â€aeruginosa</i> Biofilm Infections (Angew. Chem. 26/2020). Angewandte Chemie, 2020, 132, 10285-10285.	2.0	0