
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid eye movement sleep behaviour disorder: Past, present, and future. Journal of Sleep Research, 2022, 31, e13612.	3.2	12
2	Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. Journal of Sleep Research, 2022, 31, .	3.2	3
3	Is REM sleep a paradoxical state?: Different neurons are activated in the cingulate cortices and the claustrum during wakefulness and paradoxical sleep hypersomnia. Biochemical Pharmacology, 2021, 191, 114514.	4.4	14
4	Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation. Scientific Reports, 2021, 11, 13078.	3.3	23
5	Granule cells in the infrapyramidal blade of the dentate gyrus are activated during paradoxical (REM) sleep hypersomnia but not during wakefulness: a study using TRAP mice. Sleep, 2021, 44, .	1.1	3
6	GABA–glutamate supramammillary neurons control theta and gamma oscillations in the dentate gyrus during paradoxical (REM) sleep. Brain Structure and Function, 2020, 225, 2643-2668.	2.3	22
7	Insights into paradoxical (REM) sleep homeostatic regulation in mice using an innovative automated sleep deprivation method. Sleep, 2020, 43, .	1.1	12
8	Targeted recombination in active populations as a new mouse genetic model to study sleepâ€active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. Journal of Sleep Research, 2020, 29, e12976.	3.2	8
9	Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature Reviews Neurology, 2019, 15, 519-539.	10.1	364
10	Sleep–wake physiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 160, 359-370.	1.8	32
11	Neuroanatomical and Neurochemical Systems Involved in Paradoxical Sleep (PS) Generation. Handbook of Behavioral Neuroscience, 2019, 30, 239-248.	0.7	0
12	ONEIROS, a new miniature standalone device for recording sleep electrophysiology, physiology, temperatures and behavior in the lab and field. Journal of Neuroscience Methods, 2019, 316, 103-116.	2.5	18
13	Neuroanatomical and Neurochemical Bases of Vigilance States. Handbook of Experimental Pharmacology, 2018, 253, 35-58.	1.8	19
14	Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nature Communications, 2018, 9, 504.	12.8	85
15	Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep, 2018, 41, .	1.1	42
16	The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep. Sleep, 2018, 41, .	1.1	21
17	A Particular Medullary-Spinal Inhibitory Pathway is Recruited for the Expression of Muscle Atonia During REM Sleep. Journal of Experimental Neuroscience, 2018, 12, 117906951880874.	2.3	8
18	Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. PLoS Biology, 2018, 16, e2005982.	5.6	50

#	Article	IF	CITATIONS
19	REM sleep behaviour disorder. Nature Reviews Disease Primers, 2018, 4, 19.	30.5	290
20	Jouvet's animal model of RBD, clinical RBD, and their relationships to REM sleep mechanisms. Sleep Medicine, 2018, 49, 28-30.	1.6	3
21	Sub-regions of the dorsal raphé nucleus receive different inputs from the brainstem. Sleep Medicine, 2018, 49, 53-63.	1.6	8
22	Is REM sleep a paradoxical state showing muscle atonia and a cortical activity similar to waking?. Neurophysiologie Clinique, 2018, 48, 238.	2.2	0
23	Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews, 2017, 32, 85-94.	8.5	87
24	Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: evidence and function. Current Opinion in Neurobiology, 2017, 44, 59-64.	4.2	39
25	Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain, 2017, 140, 414-428.	7.6	118
26	Electrophysiological Evidence That the Retrosplenial Cortex Displays a Strong and Specific Activation Phased with Hippocampal Theta during Paradoxical (REM) Sleep. Journal of Neuroscience, 2017, 37, 8003-8013.	3.6	57
27	New Breakthroughs in Understanding the Role of Functional Interactions between the Neocortex and the Claustrum. Journal of Neuroscience, 2017, 37, 10877-10881.	3.6	34
28	Differential origin of the activation of dorsal and ventral dentate gyrus granule cells during paradoxical (REM) sleep in the rat. Brain Structure and Function, 2017, 222, 1495-1507.	2.3	14
29	Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep. Sleep, 2016, 39, 2173-2188.	1.1	9
30	Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behavioural Brain Research, 2016, 298, 100-110.	2.2	13
31	Unsupervised Online Classifier in Sleep Scoring for Sleep Deprivation Studies. Sleep, 2015, 38, 815-828.	1.1	35
32	Neurology and psychiatry: waking up to opportunities of sleep. : State of the art and clinical/research priorities for the next decade. European Journal of Neurology, 2015, 22, 1337-1354.	3.3	46
33	Multiple labels point-set registration. , 2015, , .		0
34	Paradoxical (REM) sleep deprivation in mice using the smallâ€platformsâ€overâ€water method: polysomnographic analyses and melaninâ€concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation. Journal of Sleep Research, 2015, 24, 309-319.	3.2	38
35	The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Science Advances, 2015, 1, e1400177.	10.3	115
36	Genetic deletion of melaninâ€concentrating hormone neurons impairs hippocampal shortâ€ŧerm synaptic plasticity and hippocampalâ€dependent forms of shortâ€ŧerm memory. Hippocampus, 2015, 25, 1361-1373.	1.9	20

#	Article	IF	CITATIONS
37	Animal models of REM dysfunctions: what they tell us about the cause of narcolepsy and RBD?. Archives Italiennes De Biologie, 2015, 152, 118-28.	0.4	6
38	The Inhibition of the Dorsal Paragigantocellular Reticular Nucleus Induces Waking and the Activation of All Adrenergic and Noradrenergic Neurons: A Combined Pharmacological and Functional Neuroanatomical Study. PLoS ONE, 2014, 9, e96851.	2.5	18
39	Breakdown in REM sleep circuitry underlies REM sleep behavior disorder. Trends in Neurosciences, 2014, 37, 279-288.	8.6	143
40	Networks of Normal and Disordered Sleep. , 2014, , 299-310.		1
41	Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy—a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Medicine, 2013, 14, 795-806.	1.6	209
42	New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Medicine, 2013, 14, 714-718.	1.6	75
43	Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Current Opinion in Neurobiology, 2013, 23, 786-792.	4.2	99
44	Brainstem structures involved in rapid eye movement sleep behavior disorder. Sleep and Biological Rhythms, 2013, 11, 9-14.	1.0	1
45	Role of MCH Neurons in Paradoxical (REM) Sleep Control. Sleep, 2013, 36, 1775-1776.	1.1	23
46	The Lateral Hypothalamic Area Controls Paradoxical (REM) Sleep by Means of Descending Projections to Brainstem GABAergic Neurons. Journal of Neuroscience, 2012, 32, 16763-16774.	3.6	85
47	Role of the Lateral Paragigantocellular Nucleus in the Network of Paradoxical (REM) Sleep: An Electrophysiological and Anatomical Study in the Rat. PLoS ONE, 2012, 7, e28724.	2.5	48
48	Tuberal Hypothalamic Neurons Secreting the Satiety Molecule Nesfatin-1 Are Critically Involved in Paradoxical (REM) Sleep Homeostasis. PLoS ONE, 2012, 7, e52525.	2.5	42
49	Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Archiv European Journal of Physiology, 2012, 463, 43-52.	2.8	107
50	The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews, 2011, 15, 153-163.	8.5	230
51	Melanin concentrating hormone in central hypersomnia. Sleep Medicine, 2011, 12, 768-772.	1.6	23
52	Evidence that Neurons of the Sublaterodorsal Tegmental Nucleus Triggering Paradoxical (REM) Sleep Are Glutamatergic. Sleep, 2011, 34, 419-423.	1.1	135
53	Insomnia, hypersomnia and coma in animal models and their clinical implications. Sleep and Biological Rhythms, 2011, 9, 52-58.	1.0	0
54	What are the mechanisms activating the sleep-active neurons located in the preoptic area?. Sleep and Biological Rhythms, 2011, 9, 59-64.	1.0	3

#	Article	IF	CITATIONS
55	Neurochemistry of sleep. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 98, 173-190.	1.8	13
56	The Neurobiology of Sleep–Wake Systems: An Overview. , 2011, , 107-119.		0
57	Les progrès sur l'architecture du sommeil paradoxal depuis William Dement et Michel Jouvet. Bulletin De L'Academie Nationale De Medecine, 2011, 195, 1517-1525.	0.0	0
58	Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep. World Journal of Biological Psychiatry, 2010, 11, 4-8.	2.6	25
59	A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia. PLoS ONE, 2010, 5, e11766.	2.5	77
60	Major Impairments of Glutamatergic Transmission and Long-Term Synaptic Plasticity in the Hippocampus of Mice Lacking the Melanin-Concentrating Hormone Receptor-1. Journal of Neurophysiology, 2010, 104, 1417-1425.	1.8	35
61	Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. Journal of Chemical Neuroanatomy, 2010, 39, 262-271.	2.1	33
62	Alternating vigilance states: new insights regarding neuronal networks and mechanisms. European Journal of Neuroscience, 2009, 29, 1741-1753.	2.6	132
63	Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides, 2009, 30, 2052-2059.	2.4	68
64	Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. Journal of Chemical Neuroanatomy, 2009, 37, 149-157.	2.1	41
65	Paradoxical (REM) Sleep Deprivation Causes a Large and Rapidly Reversible Decrease in Long-Term Potentiation, Synaptic Transmission, Glutamate Receptor Protein Levels, and ERK/MAPK Activation in the Dorsal Hippocampus. Sleep, 2009, 32, 227-240.	1.1	151
66	Paradoxical (REM) Sleep Deprivation Causes a Large and Rapidly Reversible Decrease in Long-Term Potentiation, Synaptic Transmission, Glutamate Receptor Protein Levels, and ERK/MAPK Activation in the Dorsal Hippocampus. Sleep, 2009, , .	1.1	1
67	Localization of the Brainstem GABAergic Neurons Controlling Paradoxical (REM) Sleep. PLoS ONE, 2009, 4, e4272.	2.5	207
68	Sleep architecture of the melaninâ€concentrating hormone receptor 1â€knockout mice. European Journal of Neuroscience, 2008, 27, 1793-1800.	2.6	78
69	Both the Hippocampus and Striatum Are Involved in Consolidation of Motor Sequence Memory. Neuron, 2008, 58, 261-272.	8.1	387
70	Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience, 2008, 152, 849-857.	2.3	70
71	The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience, 2008, 155, 174-181.	2.3	111
72	Gamma-aminobutyric acid and the regulation of paradoxical, or rapid eye movement, sleep. , 2008, ,		1

85-108.

#	Article	IF	CITATIONS
73	Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. , 2008, , 237-250.		1
74	Characterization of the melaninâ€concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. Journal of Comparative Neurology, 2007, 505, 147-157.	1.6	77
75	Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat. Neuroscience, 2006, 142, 37-47.	2.3	42
76	A three states sleep–waking model. Chaos, Solitons and Fractals, 2006, 29, 808-815.	5.1	7
77	Paradoxical (REM) sleep genesis: The switch from an aminergic–cholinergic to a GABAergic–glutamatergic hypothesis. Journal of Physiology (Paris), 2006, 100, 271-283.	2.1	176
78	Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. Journal of Comparative Neurology, 2006, 495, 573-586.	1.6	102
79	GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep???waking cycle. NeuroReport, 2005, 16, 1069-1073.	1.2	43
80	Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. European Journal of Neuroscience, 2005, 21, 2488-2504.	2.6	115
81	Paradoxical Sleep in Mice Lacking M ₃ and M ₂ /M ₄ Muscarinic Receptors. Neuropsychobiology, 2005, 52, 140-146.	1.9	36
82	The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 2005, 134, 1377-1390.	2.3	180
83	In vitro study of the sleep promoting neurons from the ventrolateral preoptic nucleus. Sleep and Biological Rhythms, 2004, 2, S23-S24.	1.0	Ο
84	In Vitro Identification of the Presumed Sleep-Promoting Neurons of the Ventrolateral Preoptic Nucleus (VLPO). , 2004, , 41-62.		5
85	The Network Responsible for Paradoxical Sleep Onset and Maintenance. , 2004, , 81-105.		3
86	Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep, 2004, 27, 19-25.	1.1	119
87	Brainstem structures responsible for paradoxical sleep onset and maintenance. Archives Italiennes De Biologie, 2004, 142, 397-411.	0.4	20
88	Posterior hypothalamus and regulation of vigilance states. Archives Italiennes De Biologie, 2004, 142, 487-500.	0.4	3
89	A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 2003, 4, 19.	1.9	379
90	Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. European Journal of Neuroscience, 2003, 18, 1627-1639.	2.6	187

#	Article	IF	CITATIONS
91	Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacology Biochemistry and Behavior, 2002, 73, 557-563.	2.9	31
92	The rat pontoâ€medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. European Journal of Neuroscience, 2002, 16, 1959-1973.	2.6	302
93	Single-unit and polygraphic recordings associated with systemic or local pharmacology: A multi-purpose stereotaxic approach for the awake, anaesthetic-free, and head-restrained rat. Journal of Neuroscience Research, 2000, 61, 88-100.	2.9	24
94	Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. European Journal of Neuroscience, 2000, 12, 3361-3374.	2.6	94
95	Identification of sleep-promoting neurons in vitro. Nature, 2000, 404, 992-995.	27.8	448
96	Role and Origin of the GABAergic Innervation of Dorsal Raphe Serotonergic Neurons. Journal of Neuroscience, 2000, 20, 4217-4225.	3.6	274
97	Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry. European Journal of Neuroscience, 1999, 11, 1058-1066.	2.6	29
98	Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. European Journal of Neuroscience, 1998, 10, 964-970.	2.6	176
99	Inhibitory Mechanisms in the Dorsal Raphe Nucleus and Locus Coeruleus During Sleep. , 1998, , .		1
100	Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars α demonstrated by iontophoretic application of choleratoxin (subunit b). Journal of Chemical Neuroanatomy, 1997, 13, 1-21.	2.1	238
101	Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience, 1997, 82, 443-468.	2.3	447
102	Forebrain projections of the rostral nucleus raphe magnus shown by iontophoretic application of choleratoxin b in rats. Neuroscience Letters, 1996, 216, 151-154.	2.1	16
103	Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience, 1996, 75, 737-755.	2.3	185
104	Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. NeuroReport, 1996, 8, 351-355.	1.2	40
105	Origin of the glycinergic innervation of the rat trigeminal motor nucleus. NeuroReport, 1996, 7, 3081-3086.	1.2	46
106	Alterations in c-fos expression after different experimental procedures of sleep deprivation in the cat. Brain Research, 1996, 735, 108-118.	2.2	53
107	Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. , 1996, 364, 402-413.		118
108	Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. NeuroReport, 1995, 6, 2527-2531.	1.2	64

#	Article	IF	CITATIONS
109	Serotonergic and non-serotonergic projections from the raphe nuclei to the piriform cortex in the rat: a cholera toxin B subunit (CTb) and 5-HT immunohistochemical study. Brain Research, 1995, 671, 27-37.	2.2	63
110	VIP-like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neuroscience Letters, 1995, 193, 77-80.	2.1	61
111	Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience, 1995, 65, 119-160.	2.3	308
112	Projection from nucleus reuniens thalami to piriform cortex: A tracing study in the rat. Brain Research Bulletin, 1995, 38, 87-92.	3.0	8
113	Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: A double-labeling study. Neuroscience, 1995, 67, 211-223.	2.3	46
114	Afferents to the nucleus reticularis parvicellularis of the cat medulla oblongata: A tract-tracing study with cholera toxin B subunit. Journal of Comparative Neurology, 1994, 342, 603-618.	1.6	33
115	Evidence for widespread afferents to barrington's nucleus, a brainstem region rich in corticotropin-releasing hormone neurons. Neuroscience, 1994, 62, 125-143.	2.3	139
116	Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. Journal of Chemical Neuroanatomy, 1994, 7, 3-12.	2.1	35
117	Glycine-immunoreactive neurones in the cat brain stem reticular formation. NeuroReport, 1993, 4, 1123-6.	1.2	47
118	Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse, 1992, 11, 85-104.	1.2	29
119	Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neuroscience Letters, 1991, 128, 33-36.	2.1	33
120	Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat trigeminal motor nucleus: A double-labeling study with cholera-toxin as a retrograde tracer. Journal of Comparative Neurology, 1990, 301, 262-275.	1.6	96
121	Lower brainstem afferents to the cat posterior hypothalamus: A double-labeling study. Brain Research Bulletin, 1990, 24, 437-455.	3.0	78
122	Catecholaminergic afferents to the cat median eminence as determined by double-labelling methods. Neuroscience, 1990, 36, 491-505.	2.3	9
123	Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Research, 1990, 534, 209-224.	2.2	295
124	Monoaminergic, peptidergic, and cholinergic afferents to the cat facial nucleus as evidenced by a double immunostaining method with unconjugated cholera toxin as a retrograde tracer. Journal of Comparative Neurology, 1989, 283, 285-302.	1.6	82
125	Forebrain afferents to the cat posterior hypothalamus: A double labeling study. Brain Research Bulletin, 1989, 23, 83-104.	3.0	38
126	Adrenergic input from medullary ventrolateral C1 cells to the nucleus raphe pallidus of the cat, as demonstrated by a double immunostaining technique. Neuroscience Letters, 1989, 106, 29-35.	2.1	15

#	ARTICLE	IF	CITATIONS
127	The Nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: A double-labeling study with cholera toxin as a retrograde tracer. Journal of Comparative Neurology, 1988, 277, 1-20.	1.6	199
128	Localization of CRF-immunoreactive neurons in the cat medulla oblongata: their presence in the inferior olive. Cell and Tissue Research, 1988, 251, 137-143.	2.9	23
129	Topography of neurophysin-immunoreactive neurons projecting to the neurohypophysis: Direct evidence as revealed by a double staining method. Neuroscience Letters, 1988, 86, 263-268.	2.1	5
130	Peptidergic hypothalamic afferents to the cat nucleus raphe pallidus as revealed by a double immunostaining technique using unconjugated cholera toxin as a retrograde tracer. Brain Research, 1987, 402, 339-345.	2.2	92
131	Localization of tyrosine hydroxylase immunoreactive neurons in the cat hypothalamus, with special reference to fluorescence histochemistry. Journal of Comparative Neurology, 1987, 262, 578-593.	1.6	41
132	Periventricular dopaminergic neurons terminating in the neuro-intermediate lobe of the cat hypophysis. Journal of Comparative Neurology, 1986, 244, 204-212.	1.6	33
133	Glutamatergic regulation of REM sleep. , 0, , 214-222.		0
134	Neuroanatomy and physiology of sleep and wakefulness. , 0, , 8-14.		0

9