
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2634412/publications.pdf Version: 2024-02-01

TENCEELL

#	Article	IF	CITATIONS
1	Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67, 171-177.	9.0	20
2	Towards High-Performance Semitransparent Organic Photovoltaics: Dual-Functional <i>p</i> -Type Soft Interlayer. ACS Nano, 2022, 16, 1231-1238.	14.6	12
3	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogen‣ubstitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	21.0	19
4	Advances in Organic Photovoltaics. Acta Chimica Sinica, 2021, 79, 257.	1.4	28
5	An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells. Advanced Materials, 2021, 33, e2008134.	21.0	91
6	Co ²⁺ -Tuned Tin Oxide Interfaces for Enhanced Stability of Organic Solar Cells. Langmuir, 2021, 37, 3173-3179.	3.5	7
7	Fast Response Organic Tandem Photodetector for Visible and Nearâ€Infrared Digital Optical Communications. Small, 2021, 17, e2101316.	10.0	49
8	Asymmetric Glycolated Substitution for Enhanced Permittivity and Ecocompatibility of High-Performance Photovoltaic Electron Acceptor. Jacs Au, 2021, 1, 1733-1742.	7.9	47
9	Stability: next focus in organic solar cells based on non-fullerene acceptors. Materials Chemistry Frontiers, 2021, 5, 2907-2930.	5.9	39
10	ITCâ€2Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	5.8	29
11	Color and transparency-switchable semitransparent polymer solar cells towards smart windows. Science Bulletin, 2020, 65, 217-224.	9.0	60
12	Passivated Metal Oxide n-Type Contacts for Efficient and Stable Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 1111-1118.	5.1	26
13	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. Journal of the American Chemical Society, 2020, 142, 20124-20133.	13.7	87
14	Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 5117-5125.	30.8	93
15	Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 43984-43991.	8.0	19
16	Transparent Holeâ€Transporting Frameworks: A Unique Strategy to Design Highâ€Performance Semitransparent Organic Photovoltaics. Advanced Materials, 2020, 32, e2003891.	21.0	60
17	Side-Chain Engineering of Benzodithiophene-Bridged Dimeric Porphyrin Donors for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41506-41514.	8.0	30
	Transparent Solar Cells: Light Harvesting at Oblique Incidence Decoupled from Transmission in		

18 Organic Solar Cells Exhibiting 9.8% Efficiency and 50% Visible Light Transparency (Adv. Energy Mater.) Tj ETQq0 0 **0**9gBT /Overlock 10 T

#	Article	IF	CITATIONS
19	Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. Journal of Physical Chemistry A, 2020, 124, 4367-4378.	2.5	20
20	Highâ€Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Nearâ€Zero Driving Force. Advanced Materials, 2020, 32, e2002066.	21.0	46
21	Light Harvesting at Oblique Incidence Decoupled from Transmission in Organic Solar Cells Exhibiting 9.8% Efficiency and 50% Visible Light Transparency. Advanced Energy Materials, 2020, 10, 1904196.	19.5	46
22	High-Sensitivity Visible–Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 17769-17775.	8.0	44
23	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
24	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	16.6	372
25	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. ACS Applied Materials & amp; Interfaces, 2020, 12, 23976-23983.	8.0	10
26	A thiophene-fused benzotriazole unit as a "π-bridge―in A-π-D-π-A type acceptor to achieve more balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.	2.6	10
27	Integrated Perovskite/Organic Photovoltaics with Ultrahigh Photocurrent and Photoresponse Approaching 1000 nm. Solar Rrl, 2020, 4, 2000140.	5.8	19
28	Z-Shaped Fused-Chrysene Electron Acceptors for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 33006-33011.	8.0	18
29	Facile synthesis of high-performance nonfullerene acceptor isomers <i>via</i> a one stone two birds strategy. Journal of Materials Chemistry A, 2019, 7, 20667-20674.	10.3	19
30	Enhancing the <i>J</i> _{SC} of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle as a "i€-Bridge―for Aâ^'i€â€"Dâ^'i€â€"A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 26005-26016.	8.0	19
31	Highly Transparent Organic Solar Cells with Allâ€Nearâ€Infrared Photoactive Materials. Small Methods, 2019, 3, 1900424.	8.6	55
32	Black Phosphorous Quantum Dots Sandwiched Organic Solar Cells. Small, 2019, 15, e1903977.	10.0	41
33	High-performance organic solar cells based on polymer donor/small molecule donor/nonfullerene acceptor ternary blends. Journal of Materials Chemistry A, 2019, 7, 2268-2274.	10.3	42
34	New roles of fused-ring electron acceptors in organic solar cells. Journal of Materials Chemistry A, 2019, 7, 4766-4770.	10.3	5
35	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	17.4	101
36	Inverse Optical Cavity Design for Ultrabroadband Light Absorption Beyond the Conventional Limit in Lowâ€Bandgap Nonfullerene Acceptor–Based Solar Cells. Advanced Energy Materials, 2019, 9, 1900463.	19.5	24

#	Article	IF	CITATIONS
37	Assessing the energy offset at the electron donor/acceptor interface in organic solar cells through radiative efficiency measurements. Energy and Environmental Science, 2019, 12, 3556-3566.	30.8	69
38	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
39	High-Performance Mid-Bandgap Fused-Pyrene Electron Acceptor. Chemistry of Materials, 2019, 31, 6484-6490.	6.7	40
40	Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis. ACS Nano, 2019, 13, 1071-1077.	14.6	134
41	Efficient Quaternary Organic Solar Cells with Parallelâ€Alloy Morphology. Advanced Functional Materials, 2019, 29, 1806804.	14.9	53
42	Efficient Tandem Organic Photovoltaics with Tunable Rear Sub-cells. Joule, 2019, 3, 432-442.	24.0	65
43	Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 275-283.	4.9	3
44	Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electron Acceptors. Advanced Materials, 2018, 30, e1706571.	21.0	309
45	Enhancing the performance of the electron acceptor ITIC-Th <i>via</i> tailoring its end groups. Materials Chemistry Frontiers, 2018, 2, 537-543.	5.9	46
46	Fused Tris(thienothiophene)â€Based Electron Acceptor with Strong Nearâ€Infrared Absorption for Highâ€Performance As ast Solar Cells. Advanced Materials, 2018, 30, 1705969.	21.0	340
47	Bayâ€annulated indigo based nearâ€infrared sensitive polymer for organic solar cells. Journal of Polymer Science Part A, 2018, 56, 213-220.	2.3	6
48	Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.	5.5	38
49	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	10.3	31
50	Achieving Balanced Crystallinity of Donor and Acceptor by Combining Blade oating and Ternary Strategies in Organic Solar Cells. Advanced Materials, 2018, 30, e1805041.	21.0	131
51	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	13.7	813
52	An amino-substituted perylene diimide polymer for conventional perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 2078-2084.	5.9	26
53	Nonfullerene acceptor with strong near-infrared absorption for polymer solar cells. Dyes and Pigments, 2017, 137, 553-559.	3.7	14
54	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of As ast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152

#	Article	IF	CITATIONS
55	Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments, 2016, 128, 226-234.	3.7	18
56	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
57	Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. Journal of Materials Chemistry A, 2016, 4, 1486-1494.	10.3	48
58	A Scandium Complex Bearing Both Methylidene and Phosphinidene Ligands: Synthesis, Structure, and Reactivity. Organometallics, 2015, 34, 470-476.	2.3	50
59	Effects of Thieno[3,2-b]thiophene Number on Narrow-Bandgap Fused-Ring Electron Acceptors. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	1