
Takayuki Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2002, 80, 2746-2748.	3.3	348
2	Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition. Applied Physics Letters, 2002, 80, 100-102.	3.3	169
3	Cation Distribution and Structural Instability in Bi4-xLaxTi3O12. Japanese Journal of Applied Physics, 2001, 40, 5572-5575.	1.5	158
4	Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution. Applied Physics Letters, 2002, 81, 2229-2231.	3.3	157
5	Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures. Heat Recovery Systems & CHP, 1993, 13, 57-66.	0.3	108
6	Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching. Applied Physics Letters, 2002, 81, 1660-1662.	3.3	101
7	Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon, 2019, 142, 278-284.	10.3	95
8	Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique. Journal of Applied Physics, 2002, 92, 1518-1521.	2.5	92
9	Controlled crystal growth of layered-perovskite thin films as an approach to study their basic properties. Journal of Applied Physics, 2006, 100, 051602.	2.5	84
10	Second law optimization of a latent heat storage system with PCMS having different melting points. Heat Recovery Systems & CHP, 1995, 15, 641-653.	0.3	78
11	The capric–lauric acid and pentadecane combination as phase change material for cooling applications. Applied Thermal Engineering, 2002, 22, 365-377.	6.0	78
12	Film thickness dependence of ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition. Journal of Applied Physics, 2001, 89, 3934-3938.	2.5	75
13	Performance investigation of the capric and lauric acid mixture as latent heat energy storage for a cooling system. Solar Energy, 2002, 72, 205-215.	6.1	71
14	Numerical investigation for nano-particle synthesis in an RF inductively coupled plasma. Thin Solid Films, 2004, 457, 192-200.	1.8	71
15	Growth model of binary alloy nanopowders for thermal plasma synthesis. Journal of Applied Physics, 2010, 108, .	2.5	67
16	Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition Technique. Japanese Journal of Applied Physics, 2002, 41, 6820-6824.	1.5	61
17	Ferroelectric properties of lanthanide-substituted Bi4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 2003, 93, 1707-1712.	2.5	55
18	Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas. Journal of Applied Physics, 2008, 103, .	2.5	55

#	Article	IF	CITATIONS
19	Formation mechanism of silicide nanoparticles by induction thermal plasmas. Science and Technology of Advanced Materials, 2004, 5, 639-646.	6.1	51
20	Formation mechanism of titanium boride nanoparticles by RF induction thermal plasma. Chemical Engineering Journal, 2012, 183, 483-491.	12.7	51
21	Ferroelectric property of epitaxial Bi ₄ Ti ₃ O ₁₂ films prepared by metalorganic chemical vapor deposition. Journal of Materials Research, 2001, 16, 303-307.	2.6	48
22	Water plasma generation under atmospheric pressure for HFC destruction. Thin Solid Films, 2008, 516, 4391-4396.	1.8	48
23	Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition. Journal of Applied Physics, 2001, 90, 6533-6535.	2.5	43
24	An innovative energy-saving in-flight melting technology and its application to glass production. Science and Technology of Advanced Materials, 2008, 9, 025013.	6.1	42
25	Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Ceramics. Japanese Journal of Applied Physics, 2011, 50, 09ND07.	1.5	42
26	Numerical analysis for co-condensation processes in silicide nanoparticle synthesis using induction thermal plasmas at atmospheric pressure conditions. Journal of Materials Research, 2005, 20, 2801-2811.	2.6	41
27	Vaporization mechanism from Sn–Ag mixture by Ar–H2 Arc for nanoparticle preparation. Thin Solid Films, 2008, 516, 6645-6649.	1.8	40
28	Thickness dependence of dielectric properties in bismuth layer-structured dielectrics. Applied Physics Letters, 2006, 89, 082901.	3.3	39
29	A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes. Thin Solid Films, 2007, 515, 4240-4246.	1.8	39
30	DC Water Plasma at Atmospheric Pressure for the Treatment of Aqueous Phenol. Environmental Science & Technology, 2010, 44, 4710-4715.	10.0	39
31	Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallic compounds. Thin Solid Films, 2002, 407, 98-103.	1.8	36
32	Application of radio-frequency thermal plasmas to treatment of fly ash. Thin Solid Films, 2001, 386, 189-194.	1.8	35
33	Decomposition mechanism of organic compounds by DC water plasmas at atmospheric pressure. Thin Solid Films, 2009, 518, 924-928.	1.8	35
34	Decomposition Mechanism of Fluorinated Compounds in Water Plasmas Generated Under Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2010, 30, 813-829.	2.4	35
35	Preparation of ultrafine particles of silicon base intermetallic compound by arc plasma method. Thin Solid Films, 2001, 390, 44-50.	1.8	34
36	Two-Directional Nodal Model for Co-Condensation Growth of Multicomponent Nanoparticles in Thermal Plasma Processing. Journal of Thermal Spray Technology, 2009, 18, 1022-1037.	3.1	34

#	Article	IF	CITATIONS
37	Synthesis of cobalt boride nanoparticles using RF thermal plasma. Advanced Powder Technology, 2014, 25, 365-371.	4.1	34
38	Microstructure of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Piezoe Ceramics. Japanese Journal of Applied Physics, 2012, 51, 09LD04.	ectr\$c	34
39	Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films, 2003, 435, 335-339.	1.8	33
40	Metalorganic Chemical Vapor Deposition of Epitaxial Perovskite SrIrO3Films on (100)SrTiO3Substrates. Japanese Journal of Applied Physics, 2006, 45, L36-L38.	1.5	33
41	Modeling of non-equilibrium argon–oxygen induction plasmas under atmospheric pressure. International Journal of Heat and Mass Transfer, 2006, 49, 1073-1082.	4.8	33
42	Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure. Chemical Engineering Journal, 2011, 168, 985-993.	12.7	33
43	Formation mechanism of electrically conductive nanoparticles by induction thermal plasmas. Thin Solid Films, 2003, 435, 27-32.	1.8	32
44	Thermal plasma treatment of titanium carbide powders: Part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment. Journal of Materials Research, 1996, 11, 2811-2824.	2.6	31
45	NUCLEATION AND GROWTH OF OXIDE NANOPARTICLES PREPARED BY INDUCTION THERMAL PLASMAS. Chemical Engineering Communications, 2004, 191, 1343-1361.	2.6	30
46	Multi-component co-condensation model of Ti-based boride/silicide nanoparticle growth in induction thermal plasmas. Thin Solid Films, 2007, 515, 4217-4227.	1.8	30
47	Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure. Thin Solid Films, 2009, 518, 929-935.	1.8	30
48	Effect of La substitution on Electrical Properties of Highly Oriented Bi4Ti3O12Films Prepared by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 166-169.	1.5	29
49	Two-dimensional analysis of nanoparticle formation in induction thermal plasmas with counterflow cooling. Thin Solid Films, 2008, 516, 4415-4422.	1.8	29
50	Selective preparation of polyhedral graphite particles and multi-wall carbon nanotubes by a transferred arc under atmospheric pressure. Diamond and Related Materials, 2012, 30, 70-76.	3.9	29
51	Effect of precursor fraction on silicide nanopowder growth under thermal plasma conditions: A computational study. Powder Technology, 2016, 288, 191-201.	4.2	28
52	Preparation of SrBi2Ta2O9 Thin Films by Metalorganic Chemical Vapor Deposition from Two New Liquid Organometallic Sources. Japanese Journal of Applied Physics, 1999, 38, L199-L201.	1.5	27
53	Orientation Control of Metalorganic Chemical Vapor Deposition-Bi4Ti3O12Thin Film by Sequential Source Gas Supply Method. Japanese Journal of Applied Physics, 2000, 39, 5211-5216.	1.5	27
54	Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technology, 2020, 371, 26-36.	4.2	27

#	Article	IF	CITATIONS
55	The effects of neodymium content and site occupancy on spontaneous polarization of epitaxial (Bi4â^'xNdx)Ti3O12 films. Journal of Applied Physics, 2005, 98, 024110.	2.5	26
56	Liquid Injection ALD of Pb(Zr,Ti)O[sub x] Thin Films by a Combination of Self-Regulating Component Oxide Processes. Journal of the Electrochemical Society, 2007, 154, G262.	2.9	26
57	Growth of ternary PbTiOx films in a combination of binary oxide atomic layer depositions. Journal of Applied Physics, 2007, 101, 014114.	2.5	26
58	Innovative in-flight glass-melting technology using thermal plasmas. Pure and Applied Chemistry, 2010, 82, 1337-1351.	1.9	26
59	Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas. Nanomaterials, 2016, 6, 60.	4.1	26
60	Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge. Carbon, 2017, 117, 100-111.	10.3	26
61	Epitaxial Pt Films with Different Orientations Grown on (100)Si Substrates by RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2005, 44, 5102-5106.	1.5	25
62	Growth Behavior of Atomic-Layer-Deposited Pb(Zr,Ti)O[sub x] Thin Films on Planar Substrate and Three-Dimensional Hole Structures. Journal of the Electrochemical Society, 2008, 155, D715.	2.9	25
63	A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chemical Engineering Journal, 2012, 185-186, 193-200.	12.7	25
64	Effect of nucleation temperature and heat transfer on synthesis of Ti and Fe boride nanoparticles in RF thermal plasmas. Powder Technology, 2013, 246, 210-217.	4.2	25
65	A solar-powered adsorption cooling system using a silica gel–water mixture. Energy, 1998, 23, 347-353.	8.8	24
66	Preparation of Bi2WO6 thin films by metalorganic chemical vapor deposition and their electrical properties. Thin Solid Films, 2001, 392, 128-133.	1.8	23
67	Spontaneous Polarization of Neodymium-Substituted Bi4Ti3O12Estimated from Epitaxially Grown Thin Films with in-Planec-Axis Orientations. Japanese Journal of Applied Physics, 2004, 43, L309-L311.	1.5	22
68	Two-temperature chemically-non-equilibrium modeling of argon induction plasmas with diatomic gas. International Journal of Heat and Mass Transfer, 2006, 49, 4867-4876.	4.8	22
69	Structural Transformation of Hexagonal (0001)BaTiO ₃ Ceramics to Tetragonal (111)BaTiO ₃ Ceramics. Japanese Journal of Applied Physics, 2011, 50, 09ND01.	1.5	22
70	Probing intrinsic polarization properties in bismuth-layered ferroelectric films. Applied Physics Letters, 2007, 90, 112914.	3.3	21
71	Investigation on in-flight melting behavior of granulated alkali-free glass raw material under different conditions with 12-phase AC arc. Chemical Engineering Journal, 2008, 144, 317-323.	12.7	21
72	Effect of Saturation Pressure Difference on Metal–Silicide Nanopowder Formation in Thermal Plasma Fabrication. Nanomaterials, 2016, 6, 43.	4.1	21

#	Article	IF	CITATIONS
73	Enhancement of tetragonal anisotropy and stabilisation of the tetragonal phase by Bi/Mn-double-doping in BaTiO3 ferroelectric ceramics. Scientific Reports, 2017, 7, 45842.	3.3	21
74	Water Plasma Generation Under Atmospheric Pressure for Waste Treatment. ASEAN Journal of Chemical Engineering, 2008, 5, 30.	0.5	21
75	Microstructure of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O ₃ –BiFeO ₃ Piezoela Ceramics. Japanese Journal of Applied Physics, 2012, 51, 09LD04.	ectrac	20
76	Thermal plasma treatment of titanium carbide powders: Part I. Numerical analysis of powder behavior in argon-hydrogen and argon-nitrogen radio frequency plasmas. Journal of Materials Research, 1996, 11, 2598-2610.	2.6	19
77	Bî—,Cî—,N nanotubes prepared by a plasma evaporation method. Thin Solid Films, 2001, 390, 26-30.	1.8	19
78	Characterization of Ferroelectric Property ofC-Axis- and Non-C-Axis-Oriented Epitaxially Grown Bi2VO5.5Thin Films. Japanese Journal of Applied Physics, 2001, 40, 6481-6486.	1.5	19
79	Numerical and Experimental Comparison of Induction Thermal Plasma Characteristics between 0.5 MHz and 4 MHz Journal of Chemical Engineering of Japan, 1999, 32, 619-625.	0.6	18
80	Numerical analysis of oxygen induction thermal plasmas with chemically non-equilibrium assumption for dissociation and ionization. Thin Solid Films, 2004, 457, 201-208.	1.8	18
81	Liquid-Injection Atomic Layer Deposition of TiO[sub x] and Pb–Ti–O Films. Journal of the Electrochemical Society, 2006, 153, F199.	2.9	18
82	Liquid Injection Atomic Layer Deposition of TiO[sub x] Films Using Ti[OCH(CH[sub 3])[sub 2]][sub 4]. Journal of the Electrochemical Society, 2007, 154, G134.	2.9	18
83	Investigation of Multiphase AC Arc Behavior by High-Speed Video Observation. IEEE Transactions on Plasma Science, 2011, 39, 2904-2905.	1.3	18
84	SIZE AND DENSITY ESTIMATION FROM IMPACT TRACK MORPHOLOGY IN SILICA AEROGEL: APPLICATION TO DUST FROM COMET 81P/WILD 2. Astrophysical Journal, 2012, 744, 18.	4.5	18
85	Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method. Materials Research Bulletin, 2014, 60, 158-165.	5.2	18
86	Epitaxial Growth Map for Bi4Ti3O12Films: a Determining Factor for Crystal Orientation. Japanese Journal of Applied Physics, 2005, 44, 1337-1343.	1.5	17
87	High-concentration niobium (V) doping into TiO ₂ nanoparticles synthesized by thermal plasma processing. Journal of Materials Research, 2011, 26, 658-671.	2.6	17
88	Preparation of porous structure LiFePO4/C composite by template method for lithium-ion batteries. Solid State Ionics, 2012, 214, 31-36.	2.7	17
89	Liquid exfoliation graphene sheets as catalysts for hybrid sodium-air cells. Materials Letters, 2017, 187, 32-35.	2.6	17
90	Application to cleaning of waste plastic surfaces using atmospheric non-thermal plasma jets. Thin Solid Films, 2007, 515, 4301-4307.	1.8	16

#	Article	IF	CITATIONS
91	Stability analysis of multi-phase AC arc discharge for in-flight glass melting. Current Applied Physics, 2011, 11, S35-S39.	2.4	16
92	Preparation of Nickel Nanoparticles by Direct Current Arc Discharge Method and Their Catalytic Application in Hybrid Na-Air Battery. Nanomaterials, 2018, 8, 684.	4.1	16
93	Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chemical Engineering Science, 2021, 230, 116217.	3.8	16
94	Effects of feed rate and particle size on the in-flight melting behavior of granulated powders in induction thermal plasmas. Thin Solid Films, 2008, 516, 6622-6627.	1.8	15
95	Role of CH, CH3, and OH Radicals in Organic Compound Decomposition by Water Plasmas. Plasma Chemistry and Plasma Processing, 2012, 32, 123-140.	2.4	15
96	HALOGENATED HYDROCARBON DECOMPOSITION BY STEAM THERMAL PLASMAS. High Temperature Material Processes, 2003, 7, 455-474.	0.6	15
97	In-flight thermal treatment of soda-lime-silica glass powders for glass production by argon–oxygen induction thermal plasmas. Chemical Engineering Journal, 2009, 150, 561-568.	12.7	14
98	Synthesis of Titanium Boride Nanoparticles by Induction Thermal Plasmas. Journal of Chemical Engineering of Japan, 2011, 44, 583-589.	0.6	14
99	Investigation of Electrode Phenomena in an Innovative Thermal Plasma Process for Glass Melting. Plasma Chemistry and Plasma Processing, 2014, 34, 443-456.	2.4	14
100	Investigation of the relationship between arc-anode attachment mode and anode temperature for nickel nanoparticle production by a DC arc discharge. Journal Physics D: Applied Physics, 2016, 49, 125201.	2.8	14
101	Investigation of erosion mechanism of tungsten-based electrode in multiphase AC arc by high-speed visualization of electrode phenomena. Japanese Journal of Applied Physics, 2016, 55, 07LC01.	1.5	14
102	Investigation of temperature characteristics of multiphase AC arc by high-speed visualization. Journal of Fluid Science and Technology, 2017, 12, JFST0024-JFST0024.	0.6	14
103	Investigation of erosion mechanism of tungsten-based cathode in Ar–N ₂ DC arc. Journal Physics D: Applied Physics, 2019, 52, 404002.	2.8	14
104	Reduction and separation of silica-alumina mixture with argon–hydrogen thermal plasmas. Thin Solid Films, 1999, 345, 161-166.	1.8	13
105	Ferroelectric Property of a-/b-Axis-Oriented Epitaxial Sr0.8Bi2.2Ta2O9 Thin Films Grown by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, L1478-L1481.	1.5	13
106	Numerical Analysis for Preparation of Silicon-Based Intermetallic Nano-Particles in Induction Thermal Plasma Flow Systems. JSME International Journal Series B, 2005, 48, 425-431.	0.3	13
107	Growth mechanism for carbon nanotubes in a plasma evaporation process. Thin Solid Films, 2006, 506-507, 263-267.	1.8	13
108	Film Thickness Dependence of Ferroelectric Properties of (111)-Oriented Epitaxial Bi(Mg _{1/2} Ti _{1/2})O ₃ Films. Japanese Journal of Applied Physics, 2012, 51, 09LA04.	1.5	13

#	Article	IF	CITATIONS
109	Effects of the Driving Frequency on Temperature in a Multiphase AC Arc. IEEE Transactions on Plasma Science, 2019, 47, 32-38.	1.3	13
110	Flow, temperature and concentration fields in reactive plasmas in an inductively coupled RF discharge - Characteristics in argon-oxygen and argon-nitrogen thermal plasmas Journal of Chemical Engineering of Japan, 1991, 24, 25-32.	0.6	12
111	Decomposition of 1-Decanol Emulsion by Water Thermal Plasma Jet. IEEE Transactions on Plasma Science, 2012, 40, 2831-2836.	1.3	12
112	Effect of sintering condition and V-doping on the piezoelectric properties of BaTiO ₃ –Bi(Mg _{1/2} Ti _{1/2})O _{3& ceramics. Journal of the Ceramic Society of Japan, 2013, 121, 589-592.}	lt; ‡su b>	;â€2BiFeO<
113	Synthesis of AlB ₁₂ and YB ₆₆ Nanoparticles by RF Thermal Plasmas. Journal of Physics: Conference Series, 2013, 441, 012030.	0.4	12
114	Treatment of pyridine in industrial liquid waste by atmospheric DC water plasma. Journal of Hazardous Materials, 2022, 430, 128381.	12.4	12
115	The flow, temperature and concentration fields in a radio-frequency argon-helium plasma Journal of Chemical Engineering of Japan, 1990, 23, 389-395.	0.6	11
116	Fabrication of Ion-Cosubstituted Bismuth Titanate Thin Films by Chemical Solution Deposition Method. Integrated Ferroelectrics, 2003, 52, 41-54.	0.7	11
117	Photoinduced Phase Transformations in Boron Nitride: New Polytypic Forms of sp ³ -Bonded (6H- and 30H-) BN. Journal of Physical Chemistry C, 2010, 114, 13176-13186.	3.1	11
118	In-flight melting behavior of different glass raw materials by hybrid heating of twelve-phase ac arc with oxygen burner. Thin Solid Films, 2011, 519, 7005-7008.	1.8	11
119	Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas. Journal of Alloys and Compounds, 2014, 606, 37-43.	5.5	11
120	Formation of Transition Alumina Dust around Asymptotic Giant Branch Stars: Condensation Experiments using Induction Thermal Plasma Systems. Astrophysical Journal Letters, 2019, 878, L7.	8.3	11
121	Preparation of Carbon-Coated Silicon Nanoparticles with Different Hydrocarbon Gases in Induction Thermal Plasma. Journal of Physical Chemistry C, 2021, 125, 15551-15559.	3.1	11
122	Polarization comparison of Pb(Zr,Ti)O3 and Bi4Ti3O12-based ferroelectrics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 23-27.	3.5	10
123	Modeling of non-equilibrium argon–hydrogen induction plasmas under atmospheric pressure. Thin Solid Films, 2007, 515, 4209-4216.	1.8	10
124	In-Flight-Melted Soda-Lime-Silica Glass by RF Induction Thermal Plasma. Journal of the American Ceramic Society, 2008, 91, 3908-3914.	3.8	10
125	Piezoelectric anomalies at the ferroelastic phase transitions of lead-free tungsten bronze ferroelectrics. Journal of the Ceramic Society of Japan, 2010, 118, 717-721.	1.1	10
126	Discharge and optical characteristics of long arc plasma of direct current discharge. Thin Solid Films, 2012, 523, 72-75.	1.8	9

#	Article	IF	CITATIONS
127	Investigation of Inâ€Flight Glass Melting by Controlling the Highâ€Temperature Region of Multiphase AC Arc Plasma. International Journal of Applied Glass Science, 2014, 5, 443-451.	2.0	9
128	Characteristics of water thermal plasma for biomass utilization system. Journal of Fluid Science and Technology, 2017, 12, JFST0022-JFST0022.	0.6	9
129	Characterization of Ferroelectric Property of c-axis and non-c-axis Oriented Epitaxially Grown Bismuth Layer-Structured Ferroelectric Thin Films with Different m-numbers Prepared by MOCVD. Materials Research Society Symposia Proceedings, 2000, 655, 234.	0.1	8
130	Characteristics of Multi-Phase Alternating Current Arc for Glass In-Flight Melting. Plasma Chemistry and Plasma Processing, 2009, 29, 333-346.	2.4	8
131	In-Flight Particle Measurement of Alkali-Free Glass Raw Materials in 12-Phase AC Arc Plasma. Journal of Thermal Spray Technology, 2012, 21, 863-872.	3.1	8
132	Liquid waste decomposition by long DC arc under atmospheric pressure. Chemical Engineering Journal, 2013, 231, 155-162.	12.7	8
133	Selective reaction and chemical anisotropy in epitaxial bismuth layer-structured ferroelectric thin films. Journal of Solid State Chemistry, 2005, 178, 64-71.	2.9	7
134	Comparison of electrical properties of (100)â^•(001)-oriented epitaxial Pb(Zr0.35,Ti0.65)O3 thin films with the same (001) domain fraction grown on (100)Si and (100)SrTiO3 substrates. Applied Physics Letters, 2005, 87, 182907.	3.3	7
135	Mechanisms of Decomposition of Organic Compounds by Water Plasmas at Atmospheric Pressure. Japanese Journal of Applied Physics, 2011, 50, 08JF13.	1.5	7
136	Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure. Plasma Science and Technology, 2013, 15, 357-361.	1.5	7
137	Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure. Japanese Journal of Applied Physics, 2016, 55, 07LE04.	1.5	7
138	Effects of working pressure on temperature characteristics in multiphase AC arc. Journal of Fluid Science and Technology, 2018, 13, JFST0024-JFST0024.	0.6	7
139	Condensation of Glass with Multimetal Nanoparticles: Implications for the Formation Process of GEMS Grains. Astrophysical Journal, 2021, 911, 47.	4.5	7
140	A controllable and byproduct-free synthesis method of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Advanced Powder Technology, 2021, 32, 2828-2838.	4.1	7
141	Proposal of a Chemical Heat Pump with Hydrolysis of Acetal for Cold Thermal Energy Generation Kagaku Kogaku Ronbunshu, 1996, 22, 1415-1422.	0.3	6
142	Numerical Investigation of a Local Oxygen Injection Effect on Argon Induction Plasmas Using a Chemically Non-Equilibrium Model. Journal of Chemical Engineering of Japan, 2006, 39, 1255-1264.	0.6	6
143	Effect of bias application on c-BN synthesis by induction thermal plasmas under atmospheric pressure. Thin Solid Films, 2008, 516, 4462-4467.	1.8	6
144	P-type sp3-bonded BN/n-type Si heterodiode solar cell fabricated by laser–plasma synchronous CVD method. Journal Physics D: Applied Physics, 2009, 42, 225107.	2.8	6

#	Article	IF	CITATIONS
145	Mechanism of Enhanced Vaporization from Molten Metal Surface by Argon–Hydrogen Arc Plasma. Japanese Journal of Applied Physics, 2013, 52, 076201.	1.5	6
146	Synthesis of Niobium Boride Nanoparticle by RF Thermal Plasma. Journal of Physics: Conference Series, 2013, 441, 012031.	0.4	6
147	An Alternative Carbon Dioxide Capture by Electrochemical Method. Chemistry Letters, 2014, 43, 1601-1603.	1.3	6
148	Effects of poling termination and aging process on piezoelectric properties of Mn-doped BaTi _{0.96} Zr _{0.04} O ₃ ceramics. Japanese Journal of Applied Physics, 2015, 54, 10ND05.	1.5	6
149	Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics. Journal Physics D: Applied Physics, 2017, 50, 465604.	2.8	6
150	Controlled regulation of the transformation of carbon nanomaterials under H2 mixture atmosphere by arc plasma. Chemical Engineering Science, 2021, 241, 116695.	3.8	6
151	Low leakage current and good ferroelectric properties of SrBi2(Ta0.7Nb0.3)2O9–Bi3TiTaO9 solid solution thin film. Applied Physics Letters, 2001, 79, 2067-2069.	3.3	5
152	Thermal plasma treatment of waste ion exchange resins by CO2 injection. Thin Solid Films, 2006, 506-507, 432-435.	1.8	5
153	A Numerical Study of Plasmaâ€Particle Heat Transfer Dynamics in Induction Thermal Plasmas for Glassification. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 504-509.	1.4	5
154	Influence of niobium doping on phase composition and defect-mediated photoluminescence properties of Eu3+-doped TiO2 nanopowders synthesized in Ar/O2 thermal plasma. Journal of Alloys and Compounds, 2011, 509, 8944-8951.	5.5	5
155	Application of synchrotron-based reciprocal-space mapping at a fixed angular position to identification of crystal symmetry of Bi ₄ Ti ₃ O ₁₂ epitaxial thin films. Journal of Applied Crystallography, 2011, 44, 385-391.	4.5	5
156	Metal Nanoparticle Production by Anode Jet of Argon-Hydrogen DC Arc. Advanced Materials Research, 0, 628, 11-14.	0.3	5
157	Experimental investigation of in-flight melting by hybrid heating of multi-phase alternating current arc with oxygen burner for alkali-free glass raw materials. Thin Solid Films, 2012, 523, 67-71.	1.8	5
158	High-Speed Visualization of Electrode Erosion in Multi-Phase Alternating Current Arc. Journal of Fluid Science and Technology, 2013, 8, 160-171.	0.6	5
159	Numerical Analysis of Temperature Distribution in the Long DC Arc Thermal Plasma for Waste Treatment. Journal of Chemical Engineering of Japan, 2013, 46, 201-208.	0.6	5
160	Plasma jet characteristics in long DC arc with ring-shaped anode. Journal of Fluid Science and Technology, 2018, 13, JFST0027-JFST0027.	0.6	5
161	Structural investigation of ferroelectric BiFeO3–BaTiO3 solid solutions near the rhombohedral–pseudocubic phase boundary. Applied Physics Letters, 2020, 116, .	3.3	5
162	Fluctuation Measurement of Multi-Phase AC Arc and In-Flight Particle Temperature. Journal of Chemical Engineering of Japan, 2013, 46, 672-676.	0.6	5

#	Article	IF	CITATIONS
163	Investigation of Carbon Nanomaterials Growth on Anode Surface by Arc Discharge Method. Journal of Chemical Engineering of Japan, 2014, 47, 296-300.	0.6	5
164	Characteristics of Chemical Heat Pump through Kinetic Analysis of Paraldehyde Depolymerization Journal of Chemical Engineering of Japan, 1998, 31, 374-380.	0.6	5
165	Li–Ni–Mn-oxide nanoparticle synthesis by induction thermal plasmas for lithium ion battery electrode. Journal of the Ceramic Society of Japan, 2020, 128, 635-640.	1.1	5
166	Novel Candidate of c-axis-oriented BLSF Thin Films for High-Capacitance Condenser. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	4
167	Growth of Pyrochlore Bi2Ti2O7 Epitaxial Films and Their Electrical Characterization. Integrated Ferroelectrics, 2004, 67, 201-209.	0.7	4
168	Structural and Electrical Properties of Polycrystalline Bi4-xNdxTi3O12Ferroelectric Thin Films with in-Planec-Axis Orientations. Japanese Journal of Applied Physics, 2005, 44, L292-L294.	1.5	4
169	Synthesis and characterization of LiCo x Mn2â^'x O4 cathode materials. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 307-310.	1.0	4
170	Domain Observation for BaTiO3Ceramics by a Combination of Chemical Etching and Electron Backscattered Diffraction. Japanese Journal of Applied Physics, 2009, 48, 09KFO2.	1.5	4
171	Discharge Characteristics of DC Arc Water Plasma for Environmental Applications. Plasma Science and Technology, 2012, 14, 1097-1101.	1.5	4
172	Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	4
173	Preparation of Polyhedral Graphite Particles by Arc Discharge under Atmospheric Pressure. Japanese Journal of Applied Physics, 2013, 52, 01AK01.	1.5	4
174	Growth of (111) One-Axis-Oriented Bi(Mg1/2Ti1/2)O3Films on (100)Si Substrates. Japanese Journal of Applied Physics, 2013, 52, 04CH09.	1.5	4
175	Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc. Japanese Journal of Applied Physics, 2017, 56, 056101.	1.5	4
176	Effect of Atomizing Gas on Oxidation of Droplets in Wire Arc Spraying. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 98-102.	0.4	4
177	Thermal Energy Storage, Heat Pump and Thermal Energy Transportation Technologies. Effects of Acid Strength of Solid Catalyst on Cooling Rate of a Chemical Heat Pump with Paraldehyde Depolymerization Kagaku Kogaku Ronbunshu, 1998, 24, 874-880.	0.3	3
178	Separation mechanism of iron and cobalt components from alloys using oxygen-chlorine arc plasmas. Thin Solid Films, 2002, 407, 179-185.	1.8	3
179	Synthesis and Properties of Nd-Substituted Bismuth Titanate Polycrystalline Thin Films with Polar-Axis Orientation. Key Engineering Materials, 2004, 269, 53-56.	0.4	3
180	MOCVD growth of epitaxial pyrochlore Bi2Ti2O7 thin film. Journal of the European Ceramic Society, 2006, 26, 2155-2159.	5.7	3

#	Article	IF	CITATIONS
181	Liquid Injection Atomic Layer Deposition of Pb(Zr,Ti)O <inf>3</inf> Thin Films on Three Dimensional Structures. Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	3
182	A numerical analysis of plasma-particle heat exchange during in-flight treatment of granulated powders by argon-oxygen induction thermal plasmas. Thin Solid Films, 2008, 516, 6634-6639.	1.8	3
183	Low temperature synthesis of tetragonal BaTiO3 by using molten salt. Journal of the Ceramic Society of Japan, 2010, 118, 738-740.	1.1	3
184	Anisotropic Polarization Switching in Tungsten Bronze Ferroelectrics in Binary (Bi1/2Na1/2)Nb2O6–BaNb2O6System. Japanese Journal of Applied Physics, 2010, 49, 09MD12.	1.5	3
185	Synthesis of Pure, Crystalline (Ba,Sr)TiO3 Nanosized Powders in Radio Frequency Induction Thermal Plasma. International Journal of Applied Ceramic Technology, 2011, 8, 1125-1135.	2.1	3
186	Phase composition and magnetic properties of niobium–iron codoped TiO2 nanoparticles synthesized in Ar/O2 radio-frequency thermal plasma. Journal of Solid State Chemistry, 2011, 184, 2525-2532.	2.9	3
187	Arc Behavior and Temperature Distribution in Water Thermal Plasma with Mist Generation. Journal of Chemical Engineering of Japan, 2021, 54, 277-282.	0.6	3
188	Site Engineering Concept of Ferroelectric Thin Films. Hyomen Kagaku, 2005, 26, 215-219.	0.0	3
189	Investigation of Droplet Ejection Mechanism from Electrode in Multi-Phase AC Arc. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 44s-48s.	0.5	3
190	Investigation of electrode erosion mechanism in Ar-N ₂ DC arc based on visualization of electrode phenomena. Japanese Journal of Applied Physics, 2020, 59, 116001.	1.5	3
191	Concentration of a plasma energy flow by a blowing gas Kagaku Kogaku Ronbunshu, 1988, 14, 1-7.	0.3	2
192	Heat Transfer Characteristics in tert-Butanol Dehydration Reaction Used for Heat Transport Kagaku Kogaku Ronbunshu, 1995, 21, 746-752.	0.3	2
193	Selective Reaction of Fe-Co-Ni Alloys with Ar-Cl ₂ Plasmas. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 28-33.	0.4	2
194	Long-Range Lattice Matching between (100)/(010) Bismuth-Layered Perovskite Structure and (101) Rutile Structure. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	2
195	Surface modification and characterization of F-Co doped spinel LiMn2O4. Rare Metals, 2006, 25, 33-38.	7.1	2
196	Liquid injection atomic layer deposition of perovskite-type multi-component oxide thin films for ferroelectric and higher-k three dimensional capacitor structures. , 2008, , .		2
197	Liquid Waste Decomposition by DC Water Plasmas at Atmospheric Pressure. Transactions of the Materials Research Society of Japan, 2008, 33, 691-694.	0.2	2
198	Growth Mechanism of Sn-Ag Nanoparticles Prepared by Ar-H2 Arc. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 446-451.	0.2	2

#	Article	IF	CITATIONS
199	Anisotropic electrical properties in bismuth layer structured dielectrics with natural super lattice structure. Applied Physics Letters, 2012, 101, .	3.3	2
200	Magnetically driven rotation of thermal plasma jet for non-degradable CF4 treatment. Thin Solid Films, 2012, 523, 55-62.	1.8	2
201	Growth of (1-x)NaNbO3–xBaTiO3Single Crystals by Slow-Cooling and Flux Methods. Japanese Journal of Applied Physics, 2013, 52, 09KC02.	1.5	2
202	Microstructure and Piezoelectric Properties of BaTiO ₃ -Bi(Mg _{1/2} Ti _{1/2})O ₃ -BiFeO ₃ Ceramics. Key Engineering Materials, 2013, 566, 59-63.	0.4	2
203	Characterizations of epitaxial Bi(Mg _{1/2} Ti _{1/2})O ₃ –Bi(Zn _{1/2} Ti _{1/2})O _{3solution films grown by pulsed laser deposition. Japanese Journal of Applied Physics, 2014, 53, 05FE06.}	sub≫solid	2
204	High-speed visualization of metal oxide precursor in thermal plasma flow during nanoparticle formation. Journal of Fluid Science and Technology, 2019, 14, JFST0024-JFST0024.	0.6	2
205	Li–Ni-Oxide Nanoparticle Synthesis by Induction Thermal Plasmas. Journal of Chemical Engineering of Japan, 2020, 53, 78-83.	0.6	2
206	FeRAM., 2014,, 149-171.		2
207	Control of Size and Composition of Sn based nanoparticles prepared by Ar-H2 arc. Transactions of the Materials Research Society of Japan, 2008, 33, 687-690.	0.2	2
208	Effect of Solid Reactant Conditions on Adsorption of Halon Decomposition Gases Journal of Chemical Engineering of Japan, 2002, 35, 234-240.	0.6	2
209	In-flight Melting of Granulated Powders in Thermal Plasmas for Glass Production. Transactions of the Materials Research Society of Japan, 2007, 32, 509-512.	0.2	2
210	Effect of Methane Injection Methods on the Preparation of Silicon Nanoparticles with Carbon Coating in Induction Thermal Plasma. Journal of Chemical Engineering of Japan, 2022, 55, 22-28.	0.6	2
211	Decomposition of N, N-diethyl-m-toluamide by water plasma with mist generation. Journal of Environmental Chemical Engineering, 2022, 10, 107817.	6.7	2
212	As(<scp>iii</scp>) removal through catalytic oxidation and Fe(<scp>iii</scp>) precipitation. RSC Advances, 2022, 12, 16843-16846.	3.6	2
213	Effect of phase change material(PCM) m.p. distribution on latent heat storage Kagaku Kogaku Ronbunshu, 1990, 16, 982-989.	0.3	1
214	Sterilization Mechanism of Escherichia coli by a Silent Discharge Kagaku Kogaku Ronbunshu, 1998, 24, 140-142.	0.3	1
215	Nonlinear Phenomena. Side-reactions in Chemical Heat Pump System with Paraldehyde Depolymerization Kagaku Kogaku Ronbunshu, 1999, 25, 672-675.	0.3	1
216	Preparation and Characterization of a- and b-Axis-Oriented Epitaxially Grown Bi4Ti3O12-Based Thin Films on Rutile-Type Oxides. Materials Research Society Symposia Proceedings, 2001, 688, 1.	0.1	1

#	Article	IF	CITATIONS
217	Effect of composition of MOCVD-SrRuO3top electrode of (Pb, La)(Zr, Ti)O3capacitor on H2degradation. Ferroelectrics, 2001, 260, 57-62.	0.6	1
218	Direct Crystallization and Characterization of Bi3TiTaO9Thin Films Prepared by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2002, 41, 6825-6828.	1.5	1
219	Enhancement of Remanent Polarization of BIT-based Thin Films by Ti-site Substitution using lons with Higher Charge Valences. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
220	Effect of Thermal Strain on Domain Fraction in a-/b-axis-oriented Epitaxial Bi4Ti3O12 Films. Materials Research Society Symposia Proceedings, 2003, 784, 421.	0.1	1
221	Atomic Layer Deposition of Pb(Zr,Ti)O <inf>x</inf> , Thin Films by a Combination of Binary Atomic Layer Deposition Processes. Applications of Ferroelectrics, IEEE International Symposium on, 2006, , .	0.0	1
222	Spherical Submicron-size Copper and Copper-tungsten Powders Prepared in RF Induction Thermal Plasma. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 39-43.	0.2	1
223	ç†±āƒ—āƒ©ā,°āƒžā«ā,^ā,‹āƒŠāƒŽç²'åå°æˆ¥½žå°é‡'ãë金属閑'化å°ç‰©ã,'ä¸å¿ƒãëa⊷ã┥~. Hyomen Gijutsu/J	ou ma l of t	he1Surface Fir
224	In-flight Melting Behavior of Granulated Alkali-Free Raw Material in Induction Thermal Plasmas. Plasma Chemistry and Plasma Processing, 2013, 33, 1111-1119.	2.4	1
225	Thermal Treatment of Al2O3, MgO, and CeO2Granulated Powders by Induction Thermal Plasma: A Numerical Approach. Japanese Journal of Applied Physics, 2013, 52, 01AL01.	1.5	1
226	Squareness Control in Polarization–Electric Field Hysteresis Curves in Rhombohedral Pb(Zr,Ti)O3Films. Japanese Journal of Applied Physics, 2013, 52, 04CD09.	1.5	1
227	Platelet NaNbO3grown by single-step molten salt synthesis: Study on bismuth migration in topochemical conversion reaction. Japanese Journal of Applied Physics, 2014, 53, 09PB08.	1.5	1
228	High-speed visualization of metal oxide precursor in multiphase AC arc during nanoparticle formation. Japanese Journal of Applied Physics, 2020, 59, SHHC08.	1.5	1
229	Thermal plasma synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 nanoparticles. Materials Research Express, 2020, 7, 015015.	1.6	1
230	Formation Mechanism of Amorphous Silicon Nanoparticles Synthesized by Induction Thermal Plasma. MATEC Web of Conferences, 2021, 333, 03007.	0.2	1
231	<i>N</i> , <i>N</i> -Dimethylformamide Decomposition by DC Water Plasma at Atmospheric Pressure. Journal of Chemical Engineering of Japan, 2021, 54, 486-492.	0.6	1
232	The Transient Behavior Analysis of the Capric Acid and Lauric Acid Mixture in a Vertical Tube Journal of Chemical Engineering of Japan, 2003, 36, 1421-1431.	0.6	1
233	Achievement of Mass Production System of Attractive Nanoparticles by Thermal Plasmas. Journal of the Society of Powder Technology, Japan, 2019, 56, 459-467.	0.1	1
234	Synthesis of Nanoparticles by Thermal Plasmas and Functionalization. Journal of the Society of Powder Technology, Japan, 2011, 48, 632-640.	0.1	1

#	Article	IF	CITATIONS
235	Analysis of Fluctuation Phenomena in Water Plasma. IEEJ Transactions on Power and Energy, 2016, 136, 749-754.	0.2	1

$236 \qquad \varsigma\dagger\pm \tilde{a}f = \tilde{a}f \otimes \tilde{a}_{s} \otimes \tilde{a}f \\ \tilde{a} \otimes \tilde{a}_{e} \\ \tilde{a} \otimes \tilde{a}_{e} \otimes \tilde{a}$

237	Preparation and Characterization of B-C-N Nanotubes by a Rapid Quenching Method Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 627-635.	0.2	0
238	Hetero-epitaxial Growth of (1, 0, m+1) One Axis-oriented Bismuth Layered Structured Ferroelectrics Thin Films Directly Crystallized by MOCVD. Materials Research Society Symposia Proceedings, 2001, 688, 1.	0.1	0
239	Growth of Epitaxial Site-Engineered Bi4Ti3O12-Basded Thin Films by Mocvdand Their Characterization. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	0
240	Ti-site Substitution Using the Higher-valent Cation for Enhancing the Ferroelectric Properties of Nd3+â"substituted Bismuth Titanate Thin Films. Materials Research Society Symposia Proceedings, 2003, 784, 1181.	0.1	0
241	Halogenated Hydrocarbon Decomposition by Steam Thermal Plasmas. ChemInform, 2005, 36, no.	0.0	0
242	Numerical Investigation for Growth Mechanisms of Ti-Based Intermetallic Nanoparticles in RF Thermal Plasmas. IEEE International Conference on Plasma Science, 2005, , .	0.0	0
243	In-flight melting of granulated powders by 12-phase AC arc discharge for glass production. , 2008, , .		0
244	Improvement of UV Luminescence Properties of Gallium Nitride Powder by Hydrogen Radical Irradiation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 211-215.	0.2	0
245	熱プラã,ºãƒžã,'甓ã,ã,⊲朖™ãƒ—ãƒã,»ãƒƒã,∙ンã,º ~éžå¹³è¡¡ãƒ—ラã,ºãƒžã•ã®é•ã,~. Hyomen Gij	uts u/Jø urna	al o6the Suri
245 246		utsu)Jøurna 0.3	al ofithe Sur O
	熱プラã,ºãƒžã,'ç'''ã,ã,<œœ–™ãƒ—ãƒã,»ãƒƒã,•ンã,º ~źéžå¹³è¡¡ãƒ—ラã,ºãƒžã¤ã®é•ã,~. Hyomen Gij Characterization of 12-Phase AC Arc Discharge and Glass In-Flight Melting Behavior. Advanced		
246	<pre>ct ct ct+af—af @a,ºafža,'c''''a,a,«æe—™af—afa,»affa,•af³a,º ï¼źźéžå¹³è¡¡af—af @a,ºafžaªa@é•a,ï¼źž. Hyomen Gji Characterization of 12-Phase AC Arc Discharge and Glass In-Flight Melting Behavior. Advanced Materials Research, 2012, 485, 185-188.</pre> Application and Characterization of 12-Phase AC Arc for Glass in-Flight Melting. Advanced Materials	0.3	0
246 247	 熱ãf—āf ©ã,ºãfžã,'ç'"ã,ã,<ææ-™âf—āfã,»ãffã,•ãf³ã,º ï¼źžéžå¹³è¡¡ãf—āf ©ã,ºãfžãëã®é•ã,ï¼źž. Hyomen Giji Characterization of 12-Phase AC Arc Discharge and Glass In-Flight Melting Behavior. Advanced Materials Research, 2012, 485, 185-188. Application and Characterization of 12-Phase AC Arc for Glass in-Flight Melting. Advanced Materials Research, 2012, 443-444, 637-642. Discharge Behavior Characterization of 12-Phase AC Arc and its Application. Advanced Materials 	0.3 0.3	0
246 247 248	熱āf—āf ©ā,ºāfžā,'ç'''ā,,ā,‹ææ-™āf—āfā,»āffā,·āf³ā,º ïl⁄2žéžå¹³èjjāf—āf ©ā,ºāfžā°ā@é•ā,,ïl⁄2ž. Hyomen Gji Characterization of 12-Phase AC Arc Discharge and Glass In-Flight Melting Behavior. Advanced Materials Research, 2012, 485, 185-188. Application and Characterization of 12-Phase AC Arc for Glass in-Flight Melting. Advanced Materials Research, 2012, 443-444, 637-642. Discharge Behavior Characterization of 12-Phase AC Arc and its Application. Advanced Materials Research, 2012, 479-481, 615-618. Piezoelectric enhancement of relaxor-based lead-free piezoelectric ceramics by nanodomain	0.3 0.3	0 0 0
246 247 248 249	熱āf—āf @ā,ºāfžā,'ç'''ā,,ā, œœ—™āf—āfā, »āffā, āf³ā, °ī½žéžå1³è;jāf—āf @ā,ºāfžāvā@é•ā,,ī½žž. Hyomen Gji Characterization of 12-Phase AC Arc Discharge and Glass In-Flight Melting Behavior. Advanced Materials Research, 2012, 485, 185-188. Application and Characterization of 12-Phase AC Arc for Glass in-Flight Melting. Advanced Materials Research, 2012, 443-444, 637-642. Discharge Behavior Characterization of 12-Phase AC Arc and its Application. Advanced Materials Research, 2012, 479-481, 615-618. Piezoelectric enhancement of relaxor-based lead-free piezoelectric ceramics by nanodomain engineering. , 2012, , . Preparation and dielectric property of (Li _{0.88} 0.880.12-based solid	0.3 0.3 0.3	0 0 0 0

#	Article	IF	CITATIONS
253	Methods of Numerically Analyzing and Visually Measuring Transport Phenomena in Chemical Equipment. Numerical Analysis of the Heat Transfer Mechanism in an Arc Furnace for Silica Grass Crucible Production Kagaku Kogaku Ronbunshu, 2001, 27, 535-539.	0.3	0
254	Epitaxial Yttria-stabilized Zirconia (YSZ) Film Deposited on Si(100) Substrate by YAG Laser. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 581-584.	0.2	0
255	A223 Decomposition of Liquid Wastes by DC Water Plasma under Atmospheric Pressure. The Proceedings of the Thermal Engineering Conference, 2011, 2011, 241-242.	0.0	0
256	Mechanisms of Decomposition of Organic Compounds by Water Plasmas at Atmospheric Pressure. Japanese Journal of Applied Physics, 2011, 50, 08JF13.	1.5	0
257	S055026 Formation Mechanism of Boride Nanoparticles by RF Thermal Plasmas. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _S055026-1S055026-3.	0.0	0
258	11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25). Journal of Physics: Conference Series, 2013, 441, 011001.	0.4	0
259	Innovative Thermal Plasma Processing for Functional Material Fabrication and Waste Treatment. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 358-361.	0.0	0
260	Investigation of Arc Behavior and Temperature Distribution Corresponding to Electrode and Phase Configurations in a Multiphase AC Arc. Journal of Chemical Engineering of Japan, 2020, 53, 509-515.	0.6	0
261	Decomposition Mechanism of SF ₆ by Long DC Arc Plasma. Kagaku Kogaku Ronbunshu, 2021, 47, 211-216.	0.3	0
262	Fluctuation Phenomena in Multiphase AC Arc Under Nitrogen Atmosphere. , 2020, , .		0

Fluctuation Phenomena in Multiphase AC Arc Under Nitrogen Atmosphere. , 2020, , . 262