David G James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2631237/publications.pdf

Version: 2024-02-01

304743 223800 2,221 52 22 46 h-index citations g-index papers 53 53 53 1569 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Field-Testing of Methyl Salicylate for Recruitment and Retention of Beneficial Insects in Grapes and Hops. Journal of Chemical Ecology, 2004, 30, 1613-1628.	1.8	244
2	Further Field Evaluation Of Synthetic Herbivore-Induced Plan Volatiles As Attractants For Beneficial Insects. Journal of Chemical Ecology, 2005, 31, 481-495.	1.8	239
3	Chemical ecology and conservation biological control. Biological Control, 2008, 45, 210-224.	3.0	208
4	Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 2003, 29, 1601-1609.	1.8	185
5	Fecundity in Twospotted Spider Mite (Acari: Tetranychidae) is Increased by Direct and Systemic Exposure to Imidacloprid. Journal of Economic Entomology, 2002, 95, 729-732.	1.8	171
6	Synthetic Herbivore-Induced Plant Volatiles as Field Attractants for Beneficial Insects. Environmental Entomology, 2003, 32, 977-982.	1.4	161
7	Synthetic Herbivore-induced Plant Volatiles Increase Field Captures of Parasitic Wasps. BioControl, 2005, 50, 871-880.	2.0	113
8	Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. Journal of Applied Ecology, 2011, 48, 580-590.	4.0	103
9	Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and Forest Entomology, 2011, 13, 45-57.	1.3	70
10	Imidacloprid increases egg production in Amblyseius victoriensis (Acari: Phytoseiidae). Experimental and Applied Acarology, 1997, 21, 75-82.	1.6	60
11	Pesticide Susceptibility of Two Coccinellids (Stethorus punctum picipesandHarmonia axyridis) Important in Biological Control of Mites and Aphids in Washington Hops. Biocontrol Science and Technology, 2003, 13, 253-259.	1.3	53
12	Methyl salicylate is a field attractant for the goldeneyed lacewing, Chrysopa oculata. Biocontrol Science and Technology, 2006, 16, 107-110.	1.3	45
13	Movement of grape mealybug, <i>Pseudococcus maritimus < li>, on and between host plants. Entomologia Experimentalis Et Applicata, 2008, 129, 268-275.</i>	1.4	38
14	Toxicity of imidacloprid to Galendromus occidentalis, Neoseiulus fallacis and Amblyseius andersoni (Acari: Phytoseiidae) from hops in Washington State, USA. Experimental and Applied Acarology, 2003, 31, 275-281.	1.6	37
15	Relationship between rust mites <i>Calepitrimerus vitis</i> (Nalepa), bud mites <i>Colomerus vitis</i> (Pagenstecher) (Acari: Eriophyidae) and short shootsyndrome in Oregon vineyards. International Journal of Acarology, 2007, 33, 307-318.	0.7	37
16	Selectivity of the acaricide, Bifenazate, and aphicide, pymetrozine, to spider mite predators in Washington hops. International Journal of Acarology, 2002, 28, 175-179.	0.7	34
17	Effect of Buprofezin on Survival of Immature Stages of <i>Harmonia axyridis</i> , <i>Stethorus punctum picipes</i> (Coleoptera: Coccinellidae), <i>Orius tristicolor</i> (Hemiptera: Anthocoridae), and <i>Geocoris</i> spp. (Hemiptera: Geocoridae). Journal of Economic Entomology, 2004, 97, 900-904.	1.8	33
18	Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Australian Journal of Entomology, 2000, 39, 180-184.	1.1	31

#	Article	lF	CITATIONS
19	Employing Chemical Ecology to Understand and Exploit Biodiversity for Pest Management. , 2012, , 185-195.		28
20			

#	Article	IF	CITATIONS
37	Beneficial insects associated with stinging nettle, <i>Urtica dioica </i> Linnaeus, in central Washington State. Pan-Pacific Entomologist, 2015, 91, 82-90.	0.2	8
38	Abundance and phenology of earth mites (Acari: Penthaleidae) and predatory mites in pesticide-treated and pesticide-free grassland habitats in southern new South Wales, Australia. International Journal of Acarology, 2000, 26, 363-369.	0.7	6
39	First Population Study on Winter Breeding Monarch Butterflies, Danaus plexippus (Lepidoptera:) Tj ETQq1 10.7	84314 rgBT 2.2	/Overlock 1
40	Trapping hop looper moths, <i>Hypena humuli </i> Harris (Lepidoptera: Erebidae), in hop yards with acetic acid and 3-methyl-1-butanol. International Journal of Pest Management, 2011, 57, 183-188.	1.8	4
41	Phenology and impact of natural enemies associated with the hop looper (Hypena humuli) in Washington State, USA. International Journal of Pest Management, 2011, 57, 329-339.	1.8	4
42	Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA. Insects, 2016, 7, 30.	2.2	3
43	Do Some Fall Migrants from the Pacific Northwest Augment Winter Breeding Populations of Monarch Butterflies in Southern California?. Journal of the Lepidopterists' Society, 2018, 72, 244-246.	0.2	3
44	Species Composition of Cutworm (Lepidoptera: Noctuidae) Larvae in South Central Washington Vineyards. Annals of the Entomological Society of America, 2010, 103, 592-596.	2.5	2
45	First Population Study on Winter Breeding Monarch Butterflies, (Lepidoptera: Nymphalidae) in the Urban South Bay of San Francisco, California. Insects, 2021, 12, .	2.2	2
46	Reply to Davis, A.K. Monarchs Reared in Winter in California Are Not Large Enough to Be Migrants. Comment on "James et al. First Population Study on Winter Breeding Monarch Butterflies, Danaus plexippus (Lepidoptera: Nymphalidae) in the Urban South Bay of San Francisco, California. Insects 2021, 12, 946â€, Insects, 2022, 13, 64.	2.2	2
47	Reproductive diapause in <i>Typhlodromus doreenae</i> Schicha (Acari: Phytoseiidae). International Journal of Acarology, 2000, 26, 101-103.	0.7	1
48	Trap response of cutworm moths (<i>Abagrotis orbis</i>) to a sex-attractant lure in grape vineyards. Canadian Entomologist, 2010, 142, 135-142.	0.8	1
49	Identification of prey consumed by Stethorus punctum picipes (Casey) (Cleoptera: Coccinellidae) in tree fruit and vines in Washington State, USA. International Journal of Acarology, 2011, 37, 216-220.	0.7	1
50	Identity and Seasonal Abundance of Beneficial Arthropods Associated with Big Sagebrush (Artemisia) Tj ETQq0 () 0 <u>rg</u> BT /Ov	erlock 10 Tf
51	Development and Survival ofChlosyne acastus sterope(Lepidoptera: Nymphalidae) Larvae on Three Host Plants in South Central Washington. Journal of the Lepidopterists' Society, 2018, 72, 181-184.	0.2	О
52	Manipulating plant-arthropod conversations to improve conservation biological control of mites., 2010,, 413-417.		0