
## **Thomas Weber**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630953/publications.pdf Version: 2024-02-01



THOMAS WERED

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions.<br>Gene Therapy, 2021, 28, 683-696.                                                                                                                            | 4.5 | 37        |
| 2  | Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Frontiers in Immunology, 2021, 12, 658399.                                                                                                                                      | 4.8 | 84        |
| 3  | CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proceedings of the United States of America, 2021, 118, .                                                                                                                           | 7.1 | 16        |
| 4  | Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension. Circulation, 2021, 144, 52-73.                                                                                  | 1.6 | 38        |
| 5  | Hydroxylation of N-acetylneuraminic Acid Influences the in vivo Tropism of N-linked Sialic<br>Acid-Binding Adeno-Associated Viruses AAV1, AAV5, and AAV6. Frontiers in Medicine, 2021, 8, 732095.                                                                   | 2.6 | 3         |
| 6  | Effects of genetic transfection on calcium cycling pathways mediated by double-stranded<br>adeno-associated virus in postinfarction remodeling. Journal of Thoracic and Cardiovascular<br>Surgery, 2020, 159, 1809-1819.e3.                                         | 0.8 | 12        |
| 7  | Intratracheal Gene Delivery of SIN3A Inhibits Pulmonary Arterial Hypertension and Restores BMPR2<br>Expression. , 2020, , .                                                                                                                                         |     | Ο         |
| 8  | Identification of Genes and Pathways Regulated by Lamin A in Heart. Journal of the American Heart<br>Association, 2020, 9, e015690.                                                                                                                                 | 3.7 | 9         |
| 9  | Successful Transduction with AAV Vectors after Selective Depletion of Anti-AAV Antibodies by<br>Immunoadsorption. Molecular Therapy - Methods and Clinical Development, 2020, 16, 192-203.                                                                          | 4.1 | 48        |
| 10 | Abstract 13932: Lung-targeted Sin3a Gene Therapy as a Promising Strategy to Restore Bmpr2 Expression<br>in Pulmonary Arterial Hypertension. Circulation, 2020, 142, .                                                                                               | 1.6 | 0         |
| 11 | 3213 Unraveling the role of Phospholamban (PLN) in humans via the characterization of Induced<br>Pluripotent Stem Cell (iPSC) Cardiomyocytes (CM) derived from carriers of a lethal PLN mutation.<br>Journal of Clinical and Translational Science, 2019, 3, 26-26. | 0.6 | 0         |
| 12 | Targeted Gene Delivery through the Respiratory System: Rationale for Intratracheal Gene Transfer.<br>Journal of Cardiovascular Development and Disease, 2019, 6, 8.                                                                                                 | 1.6 | 19        |
| 13 | AAV Vectors for Efficient Gene Delivery to Rodent Hearts. Methods in Molecular Biology, 2019, 1950, 311-332.                                                                                                                                                        | 0.9 | 5         |
| 14 | Protein S Protects against Podocyte Injury in Diabetic Nephropathy. Journal of the American Society of<br>Nephrology: JASN, 2018, 29, 1397-1410.                                                                                                                    | 6.1 | 34        |
| 15 | A Calsequestrin Cis-Regulatory Motif Coupled to a Cardiac Troponin T Promoter Improves Cardiac<br>Adeno-Associated Virus Serotype 9 Transduction Specificity. Human Gene Therapy, 2018, 29, 927-937.                                                                | 2.7 | 10        |
| 16 | Human Cardiac Gene Therapy. Circulation Research, 2018, 123, 601-613.                                                                                                                                                                                               | 4.5 | 75        |
| 17 | Cardiac gene therapy with adeno-associated virus-based vectors. Current Opinion in Cardiology, 2017, 32, 275-282.                                                                                                                                                   | 1.8 | 42        |
| 18 | Production and Characterization of Vectors Based on the Cardiotropic AAV Serotype 9. Methods in<br>Molecular Biology, 2017, 1521, 91-107.                                                                                                                           | 0.9 | 18        |

THOMAS WEBER

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Do we need marker gene studies in humans to improve clinical AAV gene therapy?. Gene Therapy, 2017, 24, 72-73.                                                                                                    | 4.5 | 3         |
| 20 | Protein Phosphatase Inhibitor-1 GeneÂTherapy in a Swine Model of NonischemicÂHeart Failure. Journal of<br>the American College of Cardiology, 2017, 70, 1744-1756.                                                | 2.8 | 30        |
| 21 | Use of Adeno-Associated Virus Vector for Cardiac Gene Delivery in Large-Animal Surgical Models of<br>Heart Failure. Human Gene Therapy Clinical Development, 2017, 28, 157-164.                                   | 3.1 | 27        |
| 22 | Gene Therapy for Cardiovascular Diseases. , 2016, , 377-387.                                                                                                                                                      |     | 0         |
| 23 | Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Human<br>Gene Therapy Methods, 2016, 27, 1-12.                                                                        | 2.1 | 111       |
| 24 | Effectiveness of gene delivery systems for pluripotent and differentiated cells. Molecular Therapy -<br>Methods and Clinical Development, 2015, 2, 14067.                                                         | 4.1 | 47        |
| 25 | Syntaxin 5-Dependent Retrograde Transport to the <i>trans</i> -Golgi Network Is Required for Adeno-Associated Virus Transduction. Journal of Virology, 2015, 89, 1673-1687.                                       | 3.4 | 67        |
| 26 | High Capsid–Genome Correlation Facilitates Creation of AAV Libraries for Directed Evolution.<br>Molecular Therapy, 2015, 23, 675-682.                                                                             | 8.2 | 25        |
| 27 | Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Therapy, 2014, 21, 379-386.                                   | 4.5 | 21        |
| 28 | Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of<br>Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Signaling. Circulation, 2014, 130,<br>1274-1286. | 1.6 | 44        |
| 29 | Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April<br>12, 2013. Human Gene Therapy, 2014, 25, 488-497.                                                             | 2.7 | 12        |
| 30 | Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart<br>Failure. Molecular Therapy, 2014, 22, 2038-2045.                                                           | 8.2 | 70        |
| 31 | Pre-existing Anti–Adeno-Associated Virus Antibodies as a Challenge in AAV Gene Therapy. Human Gene<br>Therapy Methods, 2013, 24, 59-67.                                                                           | 2.1 | 241       |
| 32 | Response to †Run for your life … at a comfortable speed and not too far'. Heart, 2013, 99, 588.1-588.                                                                                                             | 2.9 | 8         |
| 33 | Concomitant Intravenous Nitroglycerin With Intracoronary Delivery of AAV1.SERCA2a Enhances Gene<br>Transfer in Porcine Hearts. Molecular Therapy, 2012, 20, 565-571.                                              | 8.2 | 34        |
| 34 | Neutralizing Antibodies Against AAV Serotypes 1, 2, 6, and 9 in Sera of Commonly Used Animal Models.<br>Molecular Therapy, 2012, 20, 73-83.                                                                       | 8.2 | 143       |
| 35 | Quantification of AAV Particle Titers by Infrared Fluorescence Scanning of Coomassie-Stained Sodium<br>Dodecyl Sulfate–Polyacrylamide Gels. Human Gene Therapy Methods, 2012, 23, 198-203.                        | 2.1 | 33        |
| 36 | Novel Approaches to Deliver Molecular Therapeutics in Cardiac Disease Using Adeno-Associated Virus                                                                                                                |     | 1         |

Vectors. , 2012, , 391-458.

THOMAS WEBER

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Gene Therapy for Heart Failure. Circulation Research, 2012, 110, 777-793.                                                                                                                                                                            | 4.5  | 130       |
| 38 | Intracellular transport of recombinant adeno-associated virus vectors. Gene Therapy, 2012, 19,<br>649-658.                                                                                                                                           | 4.5  | 190       |
| 39 | Adeno-Associated Virus 2 Infection Requires Endocytosis through the CLIC/GEEC Pathway. Cell Host and Microbe, 2011, 10, 563-576.                                                                                                                     | 11.0 | 151       |
| 40 | Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors.<br>Gene Therapy, 2010, 17, 872-879.                                                                                                               | 4.5  | 54        |
| 41 | Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction.<br>Virology, 2007, 367, 10-18.                                                                                                                          | 2.4  | 35        |
| 42 | pH-Dependent Lytic Peptides Discovered by Phage Display. Biochemistry, 2006, 45, 6476-6487.                                                                                                                                                          | 2.5  | 10        |
| 43 | Altering AAV tropism with mosaic viral capsids. Molecular Therapy, 2005, 11, 856-865.                                                                                                                                                                | 8.2  | 68        |
| 44 | Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs. Science, 2004, 304, 435-438.                                                                                                                                           | 12.6 | 346       |
| 45 | Liposome Fusion Assay to Monitor Intracellular Membrane Fusion Machines. Methods in Enzymology, 2003, 372, 274-300.                                                                                                                                  | 1.0  | 59        |
| 46 | Mutations in Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Causing Increased<br>Receptor Binding Activity and Resistance to the Transition State Sialic Acid Analog 4-GU-DANA<br>(Zanamivir). Journal of Virology, 2003, 77, 309-317. | 3.4  | 50        |
| 47 | Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. Journal of Cell Biology, 2002, 158, 929-940.                                                                                               | 5.2  | 194       |
| 48 | A putative link between exocytosis and tumor development. Cancer Cell, 2002, 2, 427-428.                                                                                                                                                             | 16.8 | 14        |
| 49 | Vitamin E analogues as inducers of apoptosis: implications for their potential antineoplastic role.<br>Redox Report, 2001, 6, 143-151.                                                                                                               | 4.5  | 48        |
| 50 | Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57.                                                                                                                                          | 3.7  | 34        |
| 51 | Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57-66.                                                                                                                                       | 3.7  | 61        |
| 52 | Functional architecture of an intracellular membrane t-SNARE. Nature, 2000, 407, 198-202.                                                                                                                                                            | 27.8 | 222       |
| 53 | Use of Affinity Chromatography and TID-Ceramide Photoaffinity Labeling for Detection of<br>Ceramide-Binding Proteins. Methods in Enzymology, 2000, 312, 429-438.                                                                                     | 1.0  | 4         |
| 54 | Close Is Not Enough. Journal of Cell Biology, 2000, 150, 105-118.                                                                                                                                                                                    | 5.2  | 285       |

THOMAS WEBER

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP. Journal of Cell Biology, 2000, 149, 1063-1072.                                                                                                                                          | 5.2  | 113       |
| 56 | Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors. EMBO Journal, 2000, 19, 1272-1278.                                                                                                 | 7.8  | 32        |
| 57 | Ceramide as an Activator Lipid of Cathepsin D. , 2000, 477, 305-315.                                                                                                                                                                                         |      | 102       |
| 58 | Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12571-12576.                                    | 7.1  | 176       |
| 59 | Rapid and efficient fusion of phospholipid vesicles by the alpha -helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12565-12570. | 7.1  | 249       |
| 60 | The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion. Molecular Cell, 1999, 4, 415-421.                                                                                                              | 9.7  | 154       |
| 61 | Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO Journal, 1999, 18, 5252-5263.                                                                                                                                                           | 7.8  | 320       |
| 62 | Identification of intracellular ceramide target proteins by affinity chromatography and TID-ceramide photoaffinity labelling. Biochemical Society Transactions, 1999, 27, 393-399.                                                                           | 3.4  | 8         |
| 63 | SNAREpins: Minimal Machinery for Membrane Fusion. Cell, 1998, 92, 759-772.                                                                                                                                                                                   | 28.9 | 2,289     |
| 64 | The Myristoyl Moiety of Myristoylated Alanine-rich C Kinase Substrate (MARCKS) and MARCKS-related<br>Protein Is Embedded in the Membrane. Journal of Biological Chemistry, 1995, 270, 19879-19887.                                                           | 3.4  | 73        |
| 65 | 2-(Tributylstannyl)-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl Alcohol: A Building Block for<br>Photolabeling and Crosslinking Reagents of Very High Specific Radioactivity. Journal of the American<br>Chemical Society, 1995, 117, 3084-3095.          | 13.7 | 96        |
| 66 | Identification of Functional Domains in the Cytoskeletal Protein Talin. FEBS Journal, 1994, 224, 951-957.                                                                                                                                                    | 0.2  | 65        |
| 67 | Insertion of Filamin into Lipid Membranes Examined by Calorimetry, the Film Balance Technique, and<br>Lipid Photolabeling. Biochemistry, 1994, 33, 12565-12572.                                                                                              | 2.5  | 29        |
| 68 | Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. Journal of Biological Chemistry, 1994, 269, 18353-18358.                                                                                          | 3.4  | 90        |
| 69 | Evidence for H(+)-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. Journal of Biological Chemistry, 1994, 269, 18353-8.                                                                                              | 3.4  | 79        |