Marom Bikson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2630842/publications.pdf Version: 2024-02-01

		10389	9103
286	25,175	72	144
papers	citations	h-index	g-index
314	314	314	12521
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transcranial direct current stimulation during a prolonged cognitive task: the effect on cognitive and shooting performances in professional female basketball players. Ergonomics, 2023, 66, 492-505.	2.1	3
2	Neurocapillary-Modulation. Neuromodulation, 2022, 25, 1299-1311.	0.8	10
3	Weak DCS causes a relatively strong cumulative boost of synaptic plasticity with spaced learning. Brain Stimulation, 2022, 15, 57-62.	1.6	14
4	A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimulation, 2022, 15, 73-75.	1.6	53
5	Transcranial Electrical Stimulation for Psychiatric Disorders in Adults: A Primer. Focus (American) Tj ETQq1 1 0.784	4314 rgBT 0.8	/Qverlock 1
6	The Concept, Development, and Application of a Home-Based High-Definition tDCS for Bilateral Motor Cortex Modulation in Migraine and Pain. Frontiers in Pain Research, 2022, 3, 798056.	2.0	7
7	Short-Term Efficacy of Transcranial Focused Ultrasound to the Hippocampus in Alzheimer's Disease: A Preliminary Study. Journal of Personalized Medicine, 2022, 12, 250.	2.5	12
8	A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES) Tj ETQq0 0 0 rgBT (Dverlock 1 12.0	0 Tf 50 462
9	Noninvasive Electrical Brain Stimulation of the Central Nervous System. , 2022, , 1-33.		0
10	Factors supporting availability of home-based Neuromodulation using remote supervision in middle-income countries; Brazil experience. Brain Stimulation, 2022, 15, 385-387.	1.6	5
11	Evaluation of the effect of transcranial direct current stimulation on language impairments in the behavioural variant of frontotemporal dementia. Brain Communications, 2022, 4, fcac050.	3.3	0
12	Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat. Brain Stimulation, 2022, , .	1.6	6
13	Tolerability and feasibility of at-home remotely supervised transcranial direct current stimulation (RS-tDCS): Single-center evidence from 6,779 sessions. Brain Stimulation, 2022, 15, 707-716.	1.6	22
14	Efficacy and safety of HD-tDCS and respiratory rehabilitation for critically ill patients with COVID-19 The HD-RECOVERY randomized clinical trial. Brain Stimulation, 2022, 15, 780-788.	1.6	8
15	Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysiology Practice, 2022, 7, 146-165.	1.4	51
16	Transcranial Direct Current Stimulation (tDCS): Pain Management in End-Stage Renal Disease - Report of an Early Randomized Controlled Trial. Journal of Pain and Symptom Management, 2022, 64, 234-243.e1.	1.2	1
17	Stance Phase Gait Training Post Stroke Using Simultaneous Transcranial Direct Current Stimulation and Motor Learning-Based Virtual Reality-Assisted Therapy: Protocol Development and Initial Testing. Brain Sciences, 2022, 12, 701.	2.3	6

Potential of Transcranial Direct Current Stimulation in Alzheimer's Disease: Optimizing Trials Toward

#	Article	IF	CITATIONS
19	Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model. Neuromodulation, 2021, 24, 1327-1335.	0.8	26
20	Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. International Journal of Neuropsychopharmacology, 2021, 24, 256-313.	2.1	277
21	Comparison of cortical network effects of high-definition and conventional tDCS during visuomotor processing. Brain Stimulation, 2021, 14, 33-35.	1.6	9
22	Temporal interference stimulation targets deep brain regions by modulating neural oscillations. Brain Stimulation, 2021, 14, 55-65.	1.6	59
23	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	1.5	553
24	fMRI and transcranial electrical stimulation (tES): A systematic review of parameter space and outcomes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110149.	4.8	20
25	From adults to pediatrics: A review noninvasive brain stimulation (NIBS) to facilitate recovery from brain injury. Progress in Brain Research, 2021, 264, 287-322.	1.4	9
26	Effects of transcranial direct current stimulation on addictive behavior and brain glucose metabolism in problematic online gamers. Journal of Behavioral Addictions, 2021, 9, 1011-1021.	3.7	7
27	Animal Models of tES: Methods, Techniques, and Safety. , 2021, , 49-66.		1
28	Animal Studies on the Mechanisms of Low-Intensity Transcranial Electric Stimulation. , 2021, , 67-92.		3
29	Direct Current Stimulation Degrades Endothelial Glycocalyx of an in vitro Bloodâ€Brain Barrier. FASEB Journal, 2021, 35, .	0.5	0
30	Transcranial Direct Current Stimulation (tDCS) Augments the Effects of Gamified, Mobile Attention Bias Modification. Frontiers in Neuroergonomics, 2021, 2, .	1.1	2
31	Effect of Transcranial Direct Current Stimulation on Professional Female Soccer Players' Recovery Following Official Matches. Perceptual and Motor Skills, 2021, 128, 1504-1529.	1.3	10
32	Direct Current Stimulation Modulates Gene Expression in Endothelial Cells and Astrocytes. FASEB Journal, 2021, 35, .	0.5	1
33	Alternate sessions of transcranial direct current stimulation (tDCS) reduce chronic pain in women affected by chikungunya. A randomized clinical trial. Brain Stimulation, 2021, 14, 541-548.	1.6	14
34	Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiology and Behavior, 2021, 233, 113351.	2.1	13
35	PRIMED2 Preclinical Evidence Scoring Tool to Assess Readiness for Translation of Neuroprotection Therapies. Translational Stroke Research, 2021, , 1.	4.2	3
36	Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimulation, 2021, 14, 837-847.	1.6	40

#	Article	IF	CITATIONS
37	Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Scientific Reports, 2021, 11, 13911.	3.3	22
38	Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density. Brain Stimulation, 2021, 14, 1154-1168.	1.6	11
39	Direct Current Stimulation Disrupts Endothelial Glycocalyx and Tight Junctions of the Blood-Brain Barrier in vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 731028.	3.7	6
40	High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimulation, 2021, 14, 1419-1430.	1.6	12
41	Effects of transcranial direct current stimulation associated with an aerobic exercise bout on blood pressure and autonomic modulation of hypertensive patients: A pilot randomized clinical trial. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102866.	2.8	1
42	Investigating the brain regions involved in tDCS-Enhanced category learning using finite element modeling. NeuroImage Reports, 2021, 1, 100048.	1.0	2
43	Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Scientific Reports, 2021, 11, 1271.	3.3	20
44	Dataset of concurrent EEG, ECC, and behavior with multiple doses of transcranial electrical stimulation. Scientific Data, 2021, 8, 274.	5.3	5
45	Transcranial Direct Current Stimulation on Parkinson's Disease: Systematic Review and Meta-Analysis. Frontiers in Neurology, 2021, 12, 794784.	2.4	11
46	Prevention of schizophrenia deficits via non-invasive adolescent frontal cortex stimulation in rats. Molecular Psychiatry, 2020, 25, 896-905.	7.9	28
47	Direct current stimulation boosts hebbian plasticity inÂvitro. Brain Stimulation, 2020, 13, 287-301.	1.6	103
48	Adaptive current tDCS up to $4\hat{a}\in MA$. Brain Stimulation, 2020, 13, 69-79.	1.6	40
49	In Vivo Modulation of the Blood–Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Annals of Biomedical Engineering, 2020, 48, 1256-1270.	2.5	40
50	Methodology for tDCS integration with fMRI. Human Brain Mapping, 2020, 41, 1950-1967.	3.6	69
51	What it means to go deep with non-invasive brain stimulation. Clinical Neurophysiology, 2020, 131, 752-754.	1.5	8
52	Cerebellar transcranial alternating current stimulation modulates human gait rhythm. Neuroscience Research, 2020, 156, 265-270.	1.9	19
53	Update on the Use of Transcranial Electrical Brain Stimulation to Manage Acute and Chronic COVID-19 Symptoms. Frontiers in Human Neuroscience, 2020, 14, 595567.	2.0	18
54	Modulation of solute diffusivity in brain tissue as a novel mechanism of transcranial direct current stimulation (tDCS). Scientific Reports, 2020, 10, 18488.	3.3	12

#	Article	IF	CITATIONS
55	Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. Journal of Personalized Medicine, 2020, 10, 119.	2.5	36
56	Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Frontiers in Neurology, 2020, 11, 573718.	2.4	40
57	Concurrent Imaging of Markers of Current Flow and Neurophysiological Changes During tDCS. Frontiers in Neuroscience, 2020, 14, 374.	2.8	11
58	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78
59	A prospective trial of intraoperative tissue oxygenation measurement and its association with anastomotic leak rate after Ivor Lewis esophagectomy. Journal of Thoracic Disease, 2020, 12, 1449-1459.	1.4	2
60	Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. Journal of Neural Engineering, 2020, 17, 026033.	3.5	19
61	Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study. Frontiers in Human Neuroscience, 2020, 14, 77.	2.0	32
62	Design and Rationale of the PACt-MD Randomized Clinical Trial: Prevention of Alzheimer's dementia with Cognitive remediation plus transcranial direct current stimulation in Mild cognitive impairment and Depression. Journal of Alzheimer's Disease, 2020, 76, 733-751.	2.6	27
63	Electrical stimulation of cranial nerves in cognition and disease. Brain Stimulation, 2020, 13, 717-750.	1.6	82
64	Bioâ€Heat Model of Kilohertzâ€Frequency Deep Brain Stimulation Increases Brain Tissue Temperature. Neuromodulation, 2020, 23, 489-495.	0.8	15
65	Impact of brain atrophy on tDCS and HD-tDCS current flow: a modeling study in three variants of primary progressive aphasia. Neurological Sciences, 2020, 41, 1781-1789.	1.9	15
66	Supervised transcranial direct current stimulation (tDCS) at home: A guide for clinical research and practice. Brain Stimulation, 2020, 13, 686-693.	1.6	73
67	Updated Technique for Reliable, Easy, and Tolerated Transcranial Electrical Stimulation Including Transcranial Direct Current Stimulation. Journal of Visualized Experiments, 2020, , .	0.3	7
68	TDCS to the right anterior temporal lobe facilitates insight problem-solving. Scientific Reports, 2020, 10, 946.	3.3	33
69	Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Brain Stimulation, 2020, 13, 961-969.	1.6	59
70	Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimulation, 2020, 13, 800-803.	1.6	19
71	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	2.0	143
72	Can transcranial electrical stimulation motor threshold estimate individualized tDCS doses over the prefrontal cortex? Evidence from reverse-calculation electric field modeling. Brain Stimulation, 2020, 13, 1150-1152.	1.6	24

#	Article	IF	CITATIONS
73	Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS. Physics in Medicine and Biology, 2020, 65, 225018.	3.0	18
74	Limited Sensitivity of Hippocampal Synaptic Function or Network Oscillations to Unmodulated Kilohertz Electric Fields. ENeuro, 2020, 7, ENEURO.0368-20.2020.	1.9	8
75	Transcranial Electrical Stimulation. , 2020, , 271-292.		1
76	Automatic M1-SO Montage Headgear for Transcranial Direct Current Stimulation (TDCS) Suitable for Home and High-Throughput In-Clinic Applications. Neuromodulation, 2019, 22, 904-910.	0.8	20
77	Transcranial electrical stimulation nomenclature. Brain Stimulation, 2019, 12, 1349-1366.	1.6	84
78	Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neuroscience and Biobehavioral Reviews, 2019, 104, 118-140.	6.1	198
79	Language boosting by transcranial stimulation in progressive supranuclear palsy. Neurology, 2019, 93, e537-e547.	1.1	14
80	The Quasi-uniform assumption for Spinal Cord Stimulation translational research. Journal of Neuroscience Methods, 2019, 328, 108446.	2.5	17
81	Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 141.	4.6	89
82	Central Nervous System Electrical Stimulation for Neuroprotection in Acute Cerebral Ischemia. Stroke, 2019, 50, 2892-2901.	2.0	10
83	Transcranial Direct Current Stimulation Among Technologies for Low-Intensity Transcranial Electrical Stimulation: Classification, History, and Terminology. , 2019, , 3-43.		12
84	Transcranial Direct Current Stimulation Integration with Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Near Infrared Spectroscopy Imaging, and Electroencephalography. , 2019, , 293-345.		4
85	Stimulation Parameters and Their Reporting. , 2019, , 225-231.		0
86	Principles of Transcranial Direct Current Stimulation (tDCS): Introduction to the Biophysics of tDCS. , 2019, , 45-80.		12
87	Challenges, Open Questions and Future Direction in Transcranial Direct Current Stimulation Research and Applications. , 2019, , 627-639.		0
88	Transcranial Direct Current Stimulation Electrodes. , 2019, , 263-291.		7
89	Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. Journal of Visualized Experiments, 2019, , .	0.3	47
90	Mechanisms of Acute and After Effects of Transcranial Direct Current Stimulation. , 2019, , 81-113.		18

#	Article	IF	CITATIONS
91	Home-Based Patient-Delivered Remotely Supervised Transcranial Direct Current Stimulation. , 2019, , 379-405.		5
92	Safety of Transcranial Direct Current Stimulation. , 2019, , 167-195.		5
93	Antiepileptic Effects of a Novel Non-invasive Neuromodulation Treatment in a Subject With Early-Onset Epileptic Encephalopathy: Case Report With 20 Sessions of HD-tDCS Intervention. Frontiers in Neuroscience, 2019, 13, 547.	2.8	15
94	Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer's disease. Brain Stimulation, 2019, 12, 1222-1228.	1.6	104
95	Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 2019, 16, 056006.	3.5	229
96	Electrophysiology equipment for reliable study of kHz electrical stimulation. Journal of Physiology, 2019, 597, 2131-2137.	2.9	13
97	Response to the Letter to the Editor by Caraway et al. on "Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model― Neuromodulation, 2019, 22, 988-988.	0.8	6
98	Transcranial Direct Current Stimulation for Online Gamers. Journal of Visualized Experiments, 2019, , .	0.3	5
99	Remotely supervised transcranial direct current stimulation: A feasibility study for amyotrophic lateral sclerosis. NeuroRehabilitation, 2019, 45, 369-378.	1.3	19
100	Effects of Transcranial Direct Current Stimulation With Caffeine Intake on Muscular Strength and Perceived Exertion. Journal of Strength and Conditioning Research, 2019, 33, 1237-1243.	2.1	13
101	Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimulation, 2019, 12, 593-605.	1.6	91
102	Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 2019, 12, 668-673.	1.6	137
103	Temperature increases by kilohertz frequency spinal cord stimulation. Brain Stimulation, 2019, 12, 62-72.	1.6	45
104	Inherent physiological artifacts in EEG during tDCS. NeuroImage, 2019, 185, 408-424.	4.2	30
105	Prefronto-cerebellar neuromodulation affects appetite in obesity. International Journal of Obesity, 2019, 43, 2119-2124.	3.4	19
106	Modulating affective experience and emotional intelligence with loving kindness meditation and transcranial direct current stimulation: A pilot study. Social Neuroscience, 2019, 14, 10-25.	1.3	8
107	Role of Computational Modeling for Dose Determination. , 2019, , 233-262.		4
108	Electric field causes volumetric changes in the human brain. ELife, 2019, 8, .	6.0	57

#	Article	IF	CITATIONS
109	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimulation, 2018, 11, 465-480.	1.6	144
110	Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit. Translational Psychiatry, 2018, 8, 11.	4.8	11
111	Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimulation, 2018, 11, 991-997.	1.6	62
112	Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain inÂvivo. Brain Stimulation, 2018, 11, 727-733.	1.6	86
113	Minimal Heating at the Skin Surface During Transcranial Direct Current Stimulation. Neuromodulation, 2018, 21, 334-339.	0.8	17
114	Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation, 2018, 21, 383-389.	0.8	66
115	Neuromodulation of Axon Terminals. Cerebral Cortex, 2018, 28, 2786-2794.	2.9	75
116	Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimulation, 2018, 11, 134-157.	1.6	46
117	Remotely supervised transcranial direct current stimulation for the treatment of fatigue in multiple sclerosis: Results from a randomized, sham-controlled trial. Multiple Sclerosis Journal, 2018, 24, 1760-1769.	3.0	86
118	The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neuroscience Research, 2018, 130, 39-46.	1.9	24
119	High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation, 2018, 21, 261-268.	0.8	75
120	High-Definition transcranial direct current stimulation in early onset epileptic encephalopathy: a case study. Brain Injury, 2018, 32, 135-143.	1.2	17
121	Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 2018, 11, 310-321.	1.6	141
122	tDCS changes in motor excitability are specific to orientation of current flow. Brain Stimulation, 2018, 11, 289-298.	1.6	120
123	Manipulation of Human Verticality Using High-Definition Transcranial Direct Current Stimulation. Frontiers in Neurology, 2018, 9, 825.	2.4	17
124	Transcranial direct current stimulation for online gamers: A prospective single-arm feasibility study. Journal of Behavioral Addictions, 2018, 7, 1166-1170.	3.7	26
125	Generalizing remotely supervised transcranial direct current stimulation (tDCS): feasibility and benefit in Parkinson's disease. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 114.	4.6	61
126	Neuromodulation treats Chikungunya arthralgia: a randomized controlled trial. Scientific Reports, 2018, 8, 16010.	3.3	24

#	Article	IF	CITATIONS
127	Physics of Transcranial Direct Current Stimulation Devices and Their History. Journal of ECT, 2018, 34, 137-143.	0.6	40
128	Brain stimulation patterns emulating endogenous thalamocortical input to parvalbumin-expressing interneurons reduce nociception in mice. Brain Stimulation, 2018, 11, 1151-1160.	1.6	6
129	Transcranial Direct Current Stimulation (tDCS). , 2018, , 1589-1610.		4
130	A Computational Assessment of Target Engagement in the Treatment of Auditory Hallucinations with Transcranial Direct Current Stimulation. Frontiers in Psychiatry, 2018, 9, 48.	2.6	17
131	Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimulation, 2018, 11, 1044-1053.	1.6	16
132	At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-III Patients With Multiple Symptoms. Frontiers in Behavioral Neuroscience, 2018, 12, 93.	2.0	41
133	Transcutaneous auricular vagus nerve stimulation (taVNS) for improving oromotor function in newborns. Brain Stimulation, 2018, 11, 1198-1200.	1.6	24
134	Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimulation, 2018, 11, 947-948.	1.6	77
135	Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect. Scientific Reports, 2018, 8, 9265.	3.3	47
136	Abstract WP139: Transcranial Direct Current Stimulation (tDCS) Generates Electric Fields (EF) at the Level of Deep Nuclei of the Human Brain <i>in vivo</i> . Stroke, 2018, 49, .	2.0	0
137	Inhibition of Nitric Oxide Synthase (NOS) by N ^G â€monomethylâ€ <i>L</i> â€arginine (<i>L</i> â€ <i>NMMA</i>) Reduces Transient Increase in the Bloodâ€Brain Barrier Solute Permeability in Rat Brain by Transcranial Direct Current Stimulation. FASEB Journal, 2018, 32, .	0.5	1
138	Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hearing Research, 2017, 349, 111-128.	2.0	35
139	Mechanisms and Effects of Transcranial Direct Current Stimulation. Dose-Response, 2017, 15, 155932581668546.	1.6	147
140	Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation. Scientific Reports, 2017, 7, 43619.	3.3	8
141	Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats. Brain, Behavior, and Immunity, 2017, 64, 152-161.	4.1	72
142	Direct current stimulation boosts synaptic gain and cooperativity <i>in vitro</i> . Journal of Physiology, 2017, 595, 3535-3547.	2.9	62
143	Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation. Brain Stimulation, 2017, 10, 541-542.	1.6	65
144	Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation. NeuroImage, 2017, 157, 69-80.	4.2	64

#	Article	IF	CITATIONS
145	Noninvasive Neuromodulation Goes Deep. Cell, 2017, 169, 977-978.	28.9	33
146	Combined mnemonic strategy training and highâ€definition transcranial direct current stimulation for memory deficits in mild cognitive impairment. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 459-470.	3.7	21
147	Remotely Supervised Transcranial Direct Current Stimulation: An Update on Safety and Tolerability. Journal of Visualized Experiments, 2017, , .	0.3	31
148	How to consider animal data in tDCS safety standards. Brain Stimulation, 2017, 10, 1141-1142.	1.6	10
149	Response to letter to the editor: Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 2017, 10, 986-987.	1.6	8
150	Toward comprehensive tDCS safety standards. Brain, Behavior, and Immunity, 2017, 66, 413.	4.1	9
151	Tolerability of up to 4 mA tDCS using adaptive stimulation. Brain Stimulation, 2017, 10, e31-e32.	1.6	4
152	The Influence of Skin Redness on Blinding in Transcranial Direct Current Stimulation Studies: A Crossover Trial. Neuromodulation, 2017, 20, 248-255.	0.8	32
153	Direct Current Stimulation Alters Neuronal Input/Output Function. Brain Stimulation, 2017, 10, 36-45.	1.6	107
154	Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimulation, 2017, 10, 51-58.	1.6	255
155	Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial. Sao Paulo Medical Journal, 2017, 135, 475-480.	0.9	21
156	Comparison of the Long-Term Effect of Positioning the Cathode in tDCS in Tinnitus Patients. Frontiers in Aging Neuroscience, 2017, 9, 217.	3.4	10
157	Notes on Human Trials of Transcranial Direct Current Stimulation between 1960 and 1998. Frontiers in Human Neuroscience, 2017, 11, 71.	2.0	19
158	Transcranial Direct Current Stimulation and Sports Performance. Frontiers in Human Neuroscience, 2017, 11, 243.	2.0	62
159	Editorial: Revisiting the Effectiveness of Transcranial Direct Current Brain Stimulation for Cognition: Evidence, Challenges, and Open Questions. Frontiers in Human Neuroscience, 2017, 11, 448.	2.0	36
160	Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. ELife, 2017, 6, .	6.0	412
161	The off-label use, utility and potential value of tDCS in the clinical care of particular neuropsychiatric conditions. Journal of Law and the Biosciences, 2016, 3, 642-646.	1.6	10
162	Transcranial Direct Current Stimulation Is Feasible for Remotely Supervised Home Delivery in Multiple Sclerosis. Neuromodulation, 2016, 19, 824-831.	0.8	67

#	Article	IF	CITATIONS
163	In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI. Scientific Reports, 2016, 6, 34385.	3.3	52
164	Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine and Biology, 2016, 61, 4506-4521.	3.0	131
165	Current Status of Transcranial Direct Current Stimulation in Posttraumatic Stress and Other Anxiety Disorders. Current Behavioral Neuroscience Reports, 2016, 3, 95-101.	1.3	16
166	Tolerability of Repeated Application of Transcranial Electrical Stimulation with Limited Outputs to Healthy Subjects. Brain Stimulation, 2016, 9, 740-754.	1.6	38
167	A simple method for EEG guided transcranial electrical stimulation without models. Journal of Neural Engineering, 2016, 13, 036022.	3.5	34
168	Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia. Annals of Neurology, 2016, 80, 693-707.	5.3	47
169	Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 2016, 127, 3425-3454.	1.5	224
170	Animal Studies in the Field of Transcranial Electric Stimulation. , 2016, , 67-83.		3
171	Computer-Based Models of tDCS and tACS. , 2016, , 47-66.		2
172	Study design and methodology for a multicentre, randomised controlled trial of transcranial direct current stimulation as a treatment for unipolar and bipolar depression. Contemporary Clinical Trials, 2016, 51, 65-71.	1.8	18
173	Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimulation, 2016, 9, 641-661.	1.6	971
174	Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke. Brain Stimulation, 2016, 9, 796-798.	1.6	15
175	Transcranial direct current stimulation modulates pattern separation. NeuroReport, 2016, 27, 826-832.	1.2	6
176	Intensity, Duration, and Location of High-Definition Transcranial Direct Current Stimulation for Tinnitus Relief. Neurorehabilitation and Neural Repair, 2016, 30, 349-359.	2.9	74
177	Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization. Journal of Pain, 2016, 17, 14-26.	1.4	111
178	Cerebellar tDCS: A Novel Approach to Augment Language Treatment Post-stroke. Frontiers in Human Neuroscience, 2016, 10, 695.	2.0	48
179	Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS). PLoS ONE, 2016, 11, e0152331.	2.5	19
180	A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS). Journal of Visualized Experiments, 2015, , e53542.	0.3	34

#	Article	IF	CITATIONS
181	Reducing Transcranial Direct Current Stimulation-Induced Erythema With Skin Pretreatment: Considerations for Sham-Controlled Clinical Trials. Neuromodulation, 2015, 18, 261-265.	0.8	48
182	The Escitalopram versus Electric Current Therapy for Treating Depression Clinical Study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo Medical Journal, 2015, 133, 252-263.	0.9	50
183	State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Frontiers in Neuroanatomy, 2015, 9, 89.	1.7	107
184	Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Frontiers in Systems Neuroscience, 2015, 9, 26.	2.5	142
185	Principles of Within Electrode Current Steering1. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.7	8
186	Design of Wireless Intra-Operative Pulse Oximeter With Reticulated Pressure-Sensitive Head1. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.7	0
187	Methods for Specific Electrode Resistance Measurement During Transcranial Direct Current Stimulation. Brain Stimulation, 2015, 8, 150-159.	1.6	13
188	The Pursuit of DLPFC: Non-neuronavigated Methods to Target the Left Dorsolateral Pre-frontal Cortex With Symmetric Bicephalic Transcranial Direct Current Stimulation (tDCS). Brain Stimulation, 2015, 8, 590-602.	1.6	121
189	Transcranial direct current stimulation in obsessive–compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes. Expert Review of Medical Devices, 2015, 12, 381-391.	2.8	52
190	On the Use of Meta-analysis in Neuromodulatory Non-invasive Brain Stimulation. Brain Stimulation, 2015, 8, 666-667.	1.6	40
191	High-Definition and Non-invasive Brain Modulation of Pain andÂMotor Dysfunction in Chronic TMD. Brain Stimulation, 2015, 8, 1085-1092.	1.6	58
192	Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia. Brain Stimulation, 2015, 8, 1108-1115.	1.6	62
193	Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. Journal of Neurophysiology, 2015, 113, 2801-2811.	1.8	45
194	Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. Journal of Neurophysiology, 2015, 113, 1334-1341.	1.8	46
195	Longitudinal Neurostimulation in Older Adults Improves Working Memory. PLoS ONE, 2015, 10, e0121904.	2.5	126
196	Modeling sequence and quasi-uniform assumption in computational neurostimulation. Progress in Brain Research, 2015, 222, 1-23.	1.4	51
197	Multilevel computational models for predicting the cellular effects of noninvasive brain stimulation. Progress in Brain Research, 2015, 222, 25-40.	1.4	49
198	Targeting negative symptoms in schizophrenia: Results from a proof-of-concept trial assessing prefrontal anodic tDCS protocol. Schizophrenia Research, 2015, 166, 362-363.	2.0	18

#	Article	IF	CITATIONS
199	Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. British Journal of Sports Medicine, 2015, 49, 1213-1218.	6.7	179
200	A Feasibility Study of Bilateral Anodal Stimulation of the Prefrontal Cortex Using High-Definition Electrodes in Healthy Participants. Yale Journal of Biology and Medicine, 2015, 88, 219-25.	0.2	7
201	Reduced discomfort during high-definition transcutaneous stimulation using 6% benzocaine. Frontiers in Neuroengineering, 2014, 7, 28.	4.8	34
202	Open questions on the mechanisms of neuromodulation with applied and endogenous electric fields. Frontiers in Human Neuroscience, 2014, 8, 227.	2.0	7
203	Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask. Frontiers in Human Neuroscience, 2014, 8, 665.	2.0	30
204	Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization. Frontiers in Human Neuroscience, 2014, 8, 739.	2.0	63
205	Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Review of Medical Devices, 2014, 11, 383-394.	2.8	61
206	The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation. Journal of Neural Engineering, 2014, 11, 036002.	3.5	52
207	Computational Modeling Assisted Design of Optimized and Individualized Transcranial Direct Current Stimulation Protocols. , 2014, , 85-115.		4
208	Polarizing cerebellar neurons with transcranial Direct Current Stimulation. Clinical Neurophysiology, 2014, 125, 435-438.	1.5	45
209	Space, time, and causality in the human brain. NeuroImage, 2014, 92, 285-297.	4.2	45
210	Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 2014, 85, 1040-1047.	4.2	117
211	Clinician Accessible Tools for GUI Computational Models of Transcranial Electrical Stimulation: BONSAI and SPHERES. Brain Stimulation, 2014, 7, 521-524.	1.6	52
212	Informing dose design by modeling transcutaneous spinal direct current stimulation. Clinical Neurophysiology, 2014, 125, 2147-2149.	1.5	11
213	Building up Analgesia in Humans via the Endogenous μ-Opioid System by Combining Placebo and Active tDCS: A Preliminary Report. PLoS ONE, 2014, 9, e102350.	2.5	71
214	Toward Development of Sham Protocols for High-Definition Transcranial Direct Current Stimulation (HD-tDCS). NeuroRegulation, 2014, 1, 62-72.	1.2	27
215	Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 2013, 74, 266-275.	4.2	381
216	Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 2013, 75, 12-19.	4.2	142

#	Article	IF	CITATIONS
217	Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods, 2013, 219, 297-311.	2.5	186
218	The "Quasi-Uniform―Assumption in Animal and Computational Models of Non-Invasive Electrical Stimulation. Brain Stimulation, 2013, 6, 704-705.	1.6	69
219	Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation. Journal of Pain, 2013, 14, 371-383.	1.4	166
220	Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage: Clinical, 2013, 2, 759-766.	2.7	160
221	Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases. Clinical Neurophysiology, 2013, 124, 551-556.	1.5	52
222	Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. Journal of Physiology, 2013, 591, 2563-2578.	2.9	456
223	Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. Journal of Neural Engineering, 2013, 10, 036018.	3.5	106
224	Comparing Cortical Plasticity Induced by Conventional and High-Definition 4Â×Â1 Ring tDCS: A Neurophysiological Study. Brain Stimulation, 2013, 6, 644-648.	1.6	502
225	Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 2013, 4, 81-89.	1.4	179
226	Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study. NeuroImage, 2013, 65, 280-287.	4.2	90
227	Transcranial Electrical Stimulation Accelerates Human Sleep Homeostasis. PLoS Computational Biology, 2013, 9, e1002898.	3.2	74
228	Methods to focalize noninvasive electrical brain stimulation: principles and future clinical development for the treatment of pain. Expert Review of Neurotherapeutics, 2013, 13, 465-467.	2.8	15
229	Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). Journal of Visualized Experiments, 2013, , e50309.	0.3	141
230	Dosage Considerations for Transcranial Direct Current Stimulation in Children: A Computational Modeling Study. PLoS ONE, 2013, 8, e76112.	2.5	171
231	Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Frontiers in Human Neuroscience, 2013, 7, 613.	2.0	105
232	Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Frontiers in Human Neuroscience, 2013, 7, 687.	2.0	282
233	Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 2013, 7, 688.	2.0	297
234	Field effects and ictal synchronization: insights from in homine observations. Frontiers in Human Neuroscience, 2013, 7, 828.	2.0	14

#	Article	IF	CITATIONS
235	Electrode assembly design for transcranial Direct Current Stimulation: A FEM modeling study. , 2012, 2012, 891-5.		26
236	Axon terminal polarization induced by weak uniform DC electric fields: A modeling study. , 2012, 2012, 4575-8.		37
237	On the role of electric field orientation in optimal design of transcranial current stimulation. , 2012, 2012, 6426-9.		15
238	The point spread function of the human head and its implications for transcranial current stimulation. Physics in Medicine and Biology, 2012, 57, 6459-6477.	3.0	30
239	Fundamentals of transcranial electric and magnetic stimulation dose: Definition, selection, and reporting practices. Brain Stimulation, 2012, 5, 435-453.	1.6	339
240	Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture. Journal of Neural Engineering, 2012, 9, 046009.	3.5	44
241	High-Resolution Modeling Assisted Design of Customized and Individualized Transcranial Direct Current Stimulation Protocols. Neuromodulation, 2012, 15, 306-315.	0.8	99
242	A Pilot Study of the Tolerability and Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Pain Perception. Journal of Pain, 2012, 13, 112-120.	1.4	223
243	Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 2012, 5, 175-195.	1.6	1,122
244	Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimulation, 2012, 5, 201-207.	1.6	93
245	Guidelines for precise and accurate computational models of tDCS. Brain Stimulation, 2012, 5, 430-431.	1.6	81
246	Computational Models of Transcranial Direct Current Stimulation. Clinical EEG and Neuroscience, 2012, 43, 176-183.	1.7	245
247	A pilot study on effects of 4×1 High-Definition tDCS on motor cortex excitability. , 2012, 2012, 735-8.		58
248	Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models. Frontiers in Psychiatry, 2012, 3, 91.	2.6	339
249	tDCSâ€Induced Analgesia and Electrical Fields in Painâ€Related Neural Networks in Chronic Migraine. Headache, 2012, 52, 1283-1295.	3.9	253
250	Cellular and Network Effects of Transcranial Direct Current Stimulation. Frontiers in Neuroscience, 2012, , 55-91.	0.0	12
251	A multiple electrode scheme for optimal non-invasive electrical stimulation. , 2011, , .		5
252	Transcranial DC Stimulation in Fibromyalgia: Optimized Cortical Target Supported by High-Resolution Computational Models. Journal of Pain, 2011, 12, 610-617.	1.4	143

#	Article	IF	CITATIONS
253	Electrode Positioning and Montage in Transcranial Direct Current Stimulation. Journal of Visualized Experiments, 2011, , .	0.3	205
254	Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 2011, 4, 169-174.	1.6	289
255	Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 2011, 8, 046011.	3.5	468
256	Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods, 2010, 190, 188-197.	2.5	213
257	Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing. Journal of Neuroscience, 2010, 30, 15067-15079.	3.6	465
258	Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow. NeuroImage, 2010, 52, 1268-1278.	4.2	186
259	Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy and Behavior, 2010, 17, 6-22.	1.7	126
260	Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2009, 2, 201-207.e1.	1.6	1,038
261	Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2009, 2, 215-228.e3.	1.6	545
262	One-dimensional representation of a neuron in a uniform electric field. , 2009, 2009, 6481-4.		26
263	Bio-heat transfer model of transcranial DC stimulation: Comparison of conventional pad versus ring electrode. , 2009, 2009, 670-3.		38
264	Transcranial direct current stimulation for major depression: A general system for quantifying transcranial electrotherapy dosage. Current Treatment Options in Neurology, 2008, 10, 377-385.	1.8	56
265	Effects of highâ€frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia, 2008, 49, 1586-1593.	5.1	23
266	Effects of glucose and glutamine concentration in the formulation of the artificial cerebrospinal fluid (ACSF). Brain Research, 2008, 1218, 77-86.	2.2	21
267	Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 2008, 5, 163-174.	3.5	282
268	Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects. Journal of Neuroscience, 2007, 27, 3030-3036.	3.6	233
269	Bio-heat transfer model of deep brain stimulation-induced temperature changes. Journal of Neural Engineering, 2006, 3, 306-315.	3.5	128
270	Rational modulation of neuronal processing with applied electric fields. , 2006, 2006, 1616-9.		24

#	Article	IF	CITATIONS
271	Bio-Heat Transfer Model of Deep Brain Stimulation Induced Temperature changes. , 2006, 2006, 3580-3.		32
272	Bio-Heat Transfer Model of Deep Brain Stimulation Induced Temperature changes. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	73
273	Rational modulation of neuronal processing with applied electric fields. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
274	Suppression of Neural Activity with High Frequency Stimulation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
275	Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods, 2005, 141, 171-198.	2.5	1,738
276	Model of the effect of extracellular fields on spike time coherence. , 2004, 2004, 4584-7.		20
277	Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slicesin vitro. Journal of Physiology, 2004, 557, 175-190.	2.9	629
278	Local Suppression of Epileptiform Activity by Electrical Stimulation in Rat Hippocampus <i>In Vitro</i> . Journal of Physiology, 2003, 547, 427-434.	2.9	159
279	Depolarization Block of Neurons During Maintenance of Electrographic Seizures. Journal of Neurophysiology, 2003, 90, 2402-2408.	1.8	107
280	Conditions Sufficient for Nonsynaptic Epileptogenesis in the CA1 Region of Hippocampal Slices. Journal of Neurophysiology, 2002, 87, 62-71.	1.8	34
281	Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. Journal of Physiology, 2001, 531, 181-191.	2.9	211
282	Propagation of nonâ€synaptic epileptiform activity across a lesion in rat hippocampal slices. Journal of Physiology, 2001, 537, 191-199.	2.9	46
283	Effects of Applied Electric Fields on Low-Calcium Epileptiform Activity in the CA1 Region of Rat Hippocampal Slices. Journal of Neurophysiology, 2000, 84, 274-280.	1.8	133
284	Modulation of Burst Frequency, Duration, and Amplitude in the Zero-Ca ²⁺ Model of Epileptiform Activity. Journal of Neurophysiology, 1999, 82, 2262-2270.	1.8	70
285	Computational Modeling of Deep Tissue Heating by an Automatic Thermal Massage Bed: Predicting the Effects on Circulation. Frontiers in Medical Technology, 0, 4, .	2.5	Ο
286	Neuromodulation Strategies to Reduce Inflammation and Improve Lung Complications in COVID-19 Patients. Frontiers in Neurology, 0, 13, .	2.4	9