Alexandre de Mendonça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2628119/publications.pdf

Version: 2024-02-01

182 papers

11,156 citations

53 h-index 97 g-index

184 all docs

184 docs citations

184 times ranked 12661 citing authors

#	Article	IF	CITATIONS
1	Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain, 2023, 146, 321-336.	7.6	30
2	A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Applied Neuropsychology Adult, 2022, 29, 112-119.	1.2	18
3	Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 158-168.	1.9	7
4	Practice effects in genetic frontotemporal dementia and at-risk individuals: a GENFI study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 336-339.	1.9	1
5	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	7.6	27
6	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	5. 3	21
7	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	6.2	4
8	The Outcome of Patients with Amyloid-Negative Amnestic Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2022, 86, 629-640.	2.6	2
9	An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. Journal of Alzheimer's Disease, 2022, , 1-14.	2.6	3
10	Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurology, 2022, 79, 228.	9.0	97
11	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
12	Dataâ€driven staging of genetic frontotemporal dementia using multiâ€modal <scp>MRI</scp> . Human Brain Mapping, 2022, 43, 1821-1835.	3.6	7
13	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	3.1	1
14	Time perspective and amnestic mild cognitive impairment. Journal of Neuropsychology, 2022, 16, 463-480.	1.4	1
15	Anomia is present pre-symptomatically in frontotemporal dementia due to MAPT mutations. Journal of Neurology, 2022, 269, 4322-4332.	3.6	1
16	The <scp>CBIâ€R</scp> detects early behavioural impairment in genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 644-658.	3.7	1
17	Different MMSE domains are associated to cognitive decline and education. Applied Neuropsychology Adult, 2022, , 1-7.	1.2	3
18	Development of a sensitive trial-ready poly(GP) CSF biomarker assay for <i>C9orf72</i> -associated frontotemporal dementia and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 761-771.	1.9	12

#	Article	IF	CITATIONS
19	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
20	Longitudinal Cognitive Changes in Genetic Frontotemporal Dementia Within the GENFI Cohort. Neurology, 2022, 99, .	1.1	5
21	Association of Rare <i>APOE</i> Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurology, 2022, 79, 652.	9.0	31
22	Neuropsychological profile of amyloidâ€positive versus amyloidâ€negative amnestic Mild Cognitive Impairment. Journal of Neuropsychology, 2021, 15, 41-52.	1.4	11
23	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.8	36
24	White Matter Hyperintensities Are No Major Confounder for Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 2021, 79, 163-175.	2.6	5
25	Apathy in presymptomatic genetic frontotemporal dementia predicts cognitive decline and is driven by structural brain changes. Alzheimer's and Dementia, 2021, 17, 969-983.	0.8	31
26	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
27	MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 608-616.	1.9	10
28	Memory awareness in patients with Major Depressive Disorder. Journal of Psychiatric Research, 2021, 137, 411-418.	3.1	2
29	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
30	The Revised Self-Monitoring Scale detects early impairment of social cognition in genetic frontotemporal dementia within the GENFI cohort. Alzheimer's Research and Therapy, 2021, 13, 127.	6.2	12
31	Shift of musical hallucinations to visual hallucinations after correction of the hearing deficit in a patient with Lewy body dementia: a case report. Journal of Medical Case Reports, 2021, 15, 449.	0.8	2
32	Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiology of Aging, 2021, 108, 155-167.	3.1	3
33	Differential early subcortical involvement in genetic FTD within the GENFI cohort. Neurolmage: Clinical, 2021, 30, 102646.	2.7	28
34	Disease-related cortical thinning in presymptomatic granulin mutation carriers. NeuroImage: Clinical, 2021, 29, 102540.	2.7	8
35	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	7.6	7
36	Pattern of progression in MAPTâ€related frontotemporal dementia: Results from the GENFI study. Alzheimer's and Dementia, 2021, 17, .	0.8	0

#	Article	IF	CITATIONS
37	Differential synaptic marker involvement in the different genetic forms of frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, .	0.8	1
38	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
39	Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 975-984.	1.9	25
40	Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in <i>C9orf72</i> expansion carriers in the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1325-1328.	1.9	12
41	Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Communications, 2020, 2, .	3.3	20
42	Trajectory of apathy, cognition and neural correlates in the decades before symptoms in frontotemporal dementia. Alzheimer's and Dementia, 2020, 16, e041821.	0.8	O
43	Neuropsychological Contribution to Predict Conversion to Dementia in Patients with Mild Cognitive Impairment Due to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 74, 785-796.	2.6	6
44	An exploration of prospective memory components and subtasks of the Memory for Intentions Test (MIST). Journal of Clinical and Experimental Neuropsychology, 2020, 42, 274-284.	1.3	5
45	Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 263-270.	1.9	106
46	Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 612-621.	1.9	55
47	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	5.3	19
48	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	2.4	26
49	Can Subjective Memory Complaints Identify $\hat{Al^2}$ Positive and $\hat{Al^2}$ Negative Amnestic Mild Cognitive Impairment Patients?. Journal of Alzheimer's Disease, 2019, 70, 1103-1111.	2.6	4
50	Mental time travel in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 2019, 41, 845-855.	1.3	8
51	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	10.2	128
52	Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurology, The, 2019, 18, 1034-1044.	10.2	85
53	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. Neurolmage, 2019, 189, 645-654.	4.2	33
54	Online information and support for carers of people with youngâ€onset dementia: A multiâ€site randomised controlled pilot study. International Journal of Geriatric Psychiatry, 2019, 34, 1455-1464.	2.7	33

#	Article	IF	Citations
55	Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 997-1004.	1.9	19
56	Education modulates brain maintenance in presymptomatic frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1124-1130.	1.9	23
57	Semi-quantification and grading of amyloid PET: A project of the European Alzheimer's Disease Consortium (EADC). Neurolmage: Clinical, 2019, 23, 101846.	2.7	18
58	Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain, 2019, 142, 1108-1120.	7.6	41
59	Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology, 2019, 93, e1699-e1706.	1.1	19
60	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NeuroImage: Clinical, 2019, 24, 102077.	2.7	27
61	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	4.2	16
62	Neuropsychological Predictors of Long-Term (10 Years) Mild Cognitive Impairment Stability. Journal of Alzheimer's Disease, 2018, 62, 1703-1711.	2.6	14
63	Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiology of Aging, 2018, 66, 181.e3-181.e10.	3.1	19
64	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	3.1	151
65	Association of Cerebral Amyloid- \hat{l}^2 Aggregation With Cognitive Functioning in Persons Without Dementia. JAMA Psychiatry, 2018, 75, 84.	11.0	133
66	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	3.1	40
67	Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 2018, 62, 245.e1-245.e7.	3.1	16
68	Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer's disease: a feature selection ensemble combining stability and predictability. BMC Medical Informatics and Decision Making, 2018, 18, 137.	3.0	34
69	Can 11C-PiB-PET Relative Delivery R1 or 11C-PiB-PET Perfusion Replace 18F-FDG-PET in the Assessment of Brain Neurodegeneration?. Journal of Alzheimer's Disease, 2018, 65, 89-97.	2.6	21
70	Quantitative Genetics Validates Previous Genetic Variants and Identifies Novel Genetic Players Influencing Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 2018, 66, 639-652.	2.6	12
71	Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 2018, 9, 4273.	12.8	263
72	Memory complaints in amnestic Mild Cognitive Impairment: More prospective or retrospective?. International Journal of Geriatric Psychiatry, 2018, 33, 1011-1018.	2.7	7

#	Article	IF	Citations
73	Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimer's Research and Therapy, 2018, 10, 46.	6.2	34
74	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	3.7	39
75	Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort. Journal of Alzheimer's Disease, 2018, 65, 1-16.	2.6	28
76	No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients. Neurobiology of Aging, 2018, 69, 293.e9-293.e11.	3.1	15
77	Sustaining prospective memory functioning in amnestic mild cognitive impairment: A lifespan approach to the critical role of encoding Neuropsychology, 2018, 32, 634-644.	1.3	6
78	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	7.6	55
79	Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathologica, 2017, 134, 475-487.	7.7	53
80	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	2.7	63
81	Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 111-126.	2.4	197
82	The frequency and influence of dementia risk factors in prodromal Alzheimer's disease. Neurobiology of Aging, 2017, 56, 33-40.	3.1	27
83	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	2.5	87
84	[P4–071]: EXOME SEQUENCING IN ATYPICAL FRONTOTEMPORAL DEMENTIA WITH PERIâ€ROLANDIC ATROPHY SUGGESTS A ROLE FOR MATRIX METALLOPROTEINASES IN FRONTOTEMPORAL DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1285.	Υ 0.8	0
85	Personality of the caregiver influences the use of strategies to deal with the behavior of persons with dementia. Geriatric Nursing, 2017, 38, 63-69.	1.9	9
86	Enhanced LTP in aged rats: Detrimental or compensatory?. Neuropharmacology, 2017, 114, 12-19.	4.1	25
87	Delay discounting in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 2017, 39, 336-346.	1.3	15
88	[ICâ€03–04]: WHITE MATTER HYPERINTENSITIES IN GENETIC FRONTOTEMPORAL DEMENTIA: A GENFI STUDY. Alzheimer's and Dementia, 2017, 13, P9.	0.8	0
89	Adenosine Receptors and Memory Disorders. , 2017, , 175-186.		0
90	Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows. BMC Medical Informatics and Decision Making, 2017, 17, 110.	3.0	33

#	Article	IF	CITATIONS
91	Towards Trustworthy Predictions of Conversion from Mild Cognitive Impairment to Dementia: A Conformal Prediction Approach. Advances in Intelligent Systems and Computing, 2017, , 155-163.	0.6	2
92	Improving Prognostic Prediction from Mild Cognitive Impairment to Alzheimer's Disease Using Genetic Algorithms. Advances in Intelligent Systems and Computing, 2017, , 180-188.	0.6	6
93	Education modifies the type of subjective memory complaints in older people. International Journal of Geriatric Psychiatry, 2016, 31, 153-160.	2.7	21
94	Chocolate Consumption is Associated with a Lower Risk of Cognitive Decline. Journal of Alzheimer's Disease, 2016, 53, 85-93.	2.6	57
95	RHAPSODY – Internet-based support for caregivers of people with young onset dementia: program design and methods of a pilot study. International Psychogeriatrics, 2016, 28, 2091-2099.	1.0	24
96	A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathologica, 2016, 132, 213-224.	7.7	83
97	Pittsburgh compound B imaging and cerebrospinal fluid amyloid- \hat{l}^2 in a multicentre European memory clinic study. Brain, 2016, 139, 2540-2553.	7.6	107
98	Time Perception in Mild Cognitive Impairment: Interval Length and Subjective Passage of Time. Journal of the International Neuropsychological Society, 2016, 22, 755-764.	1.8	16
99	Depression with melancholic features is associated with higher long-term risk for dementia. Journal of Affective Disorders, 2016, 202, 220-229.	4.1	13
100	Performance and complications of lumbar puncture in memory clinics: Results of the multicenter lumbar puncture feasibility study. Alzheimer's and Dementia, 2016, 12, 154-163.	0.8	179
101	Rare Variants in <i>PLD3</i> Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort. Human Mutation, 2015, 36, 1226-1235.	2.5	23
102	The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases. Frontiers in Neurology, 2015, 6, 216.	2.4	36
103	Prevalence and prognosis of Alzheimer's disease at the mild cognitive impairment stage. Brain, 2015, 138, 1327-1338.	7.6	284
104	Decrease in APP and CP mRNA expression supports impairment of iron export in Alzheimer's disease patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2116-2122.	3.8	33
105	Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiology of Aging, 2015, 36, 2005.e15-2005.e22.	3.1	34
106	Classification of primary progressive aphasia: Do unsupervised data mining methods support a logopenic variant?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 147-159.	1.7	13
107	Prevalence of Cerebral Amyloid Pathology in Persons Without Dementia. JAMA - Journal of the American Medical Association, 2015, 313, 1924.	7.4	1,166
108	Enhancing prospective memory in mild cognitive impairment: The role of enactment. Journal of Clinical and Experimental Neuropsychology, 2015, 37, 863-877.	1.3	19

#	Article	IF	Citations
109	The use of biomarkers for the etiologic diagnosis of MCI in Europe: An EADC survey. Alzheimer's and Dementia, 2015, 11, 195.	0.8	56
110	Nonâ€literal language deficits in mild cognitive impairment. Psychogeriatrics, 2014, 14, 222-228.	1.2	26
111	Significance of Subjective Memory Complaints in the Clinical Setting. Journal of Geriatric Psychiatry and Neurology, 2014, 27, 259-265.	2.3	31
112	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	7.7	93
113	Genetic and biochemical markers in patients with Alzheimer's disease support a concerted systemic iron homeostasis dysregulation. Neurobiology of Aging, 2014, 35, 777-785.	3.1	68
114	A Panâ€∢scp>European Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
115	Prediction of Long-Term (5 Years) Conversion to Dementia Using Neuropsychological Tests in a Memory Clinic Setting. Journal of Alzheimer's Disease, 2013, 34, 681-689.	2.6	21
116	Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 70-72.	1.7	11
117	Class Imbalance in the Prediction of Dementia from Neuropsychological Data. Lecture Notes in Computer Science, 2013, , 138-151.	1.3	6
118	Quality of life in patients with mild cognitive impairment. Aging and Mental Health, 2013, 17, 287-292.	2.8	126
119	Quality of life in patients with cognitive impairment: validation of the Quality of Life–Alzheimer's Disease scale in Portugal. International Psychogeriatrics, 2013, 25, 1085-1096.	1.0	35
120	Phenotypic Variability of Familial and Sporadic Progranulin p.Gln257Profs*27 Mutation. Journal of Alzheimer's Disease, 2013, 37, 335-342.	2.6	9
121	Prediction of Dementia Patients: A Comparative Approach Using Parametric Versus Nonparametric Classifiers. Studies in Theoretical and Applied Statistics, Selected Papers of the Statistical Societies, 2013, , 269-280.	0.2	1
122	Rethinking Alzheimer's Disease. Frontiers in Neurology, 2012, 3, 45.	2.4	8
123	Comparison of Four Verbal Memory Tests for the Diagnosis and Predictive Value of Mild Cognitive Impairment. Dementia and Geriatric Cognitive Disorders Extra, 2012, 2, 120-131.	1.3	55
124	Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience, 2012, 220, 256-266.	2.3	73
125	Serial position effects in Alzheimer's disease, mild cognitive impairment, and normal aging: Predictive value for conversion to dementia. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 841-852.	1.3	35
126	Speech Therapy in Primary Progressive Aphasia: A Pilot Study. Dementia and Geriatric Cognitive Disorders Extra, 2012, 2, 321-331.	1.3	37

#	Article	IF	CITATIONS
127	Memory Complaints Associated with Seeking Clinical Care. International Journal of Alzheimer's Disease, 2012, 2012, 1-5.	2.0	25
128	Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Research Notes, 2011, 4, 299.	1.4	284
129	Assessment of dementia in ethnic minority patients in Europe: a European Alzheimer's Disease Consortium survey. International Psychogeriatrics, 2011, 23, 86-95.	1.0	104
130	Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience, 2011, 34, 12-21.	2.6	149
131	The use of neuropsychological tests across Europe: the need for a consensus in the use of assessment tools for dementia. European Journal of Neurology, 2011, 18, 279-285.	3.3	42
132	Influence of personality on caregiver's burden, depression and distress related to the BPSD. International Journal of Geriatric Psychiatry, 2011, 26, 1275-1282.	2.7	57
133	The Outcome of Elderly Patients with Cognitive Complaints but Normal Neuropsychological Tests. Journal of Alzheimer's Disease, 2010, 19, 137-145.	2.6	35
134	Caffeine Intake is Associated with a Lower Risk of Cognitive Decline: A Cohort Study from Portugal. Journal of Alzheimer's Disease, 2010, 20, S175-S185.	2.6	83
135	Functional evaluation distinguishes MCI patients from healthy elderly people — The ADCS/MCI/ADL scale. Journal of Nutrition, Health and Aging, 2010, 14, 703-709.	3.3	83
136	Therapeutic Opportunities for Caffeine in Alzheimer's Disease and Other Neurodegenerative Disorders. Journal of Alzheimer's Disease, 2010, 20, S1-S2.	2.6	28
137	Memory Complaints Are Frequent but Qualitatively Different in Young and Elderly Healthy People. Gerontology, 2010, 56, 272-277.	2.8	77
138	Caffeine, Adenosine Receptors, and Synaptic Plasticity. Journal of Alzheimer's Disease, 2010, 20, S25-S34.	2.6	101
139	Electrophysiological Studies in Healthy Subjects Involving Caffeine. Journal of Alzheimer's Disease, 2010, 20, S63-S69.	2.6	17
140	Concluding Remarks. Journal of Alzheimer's Disease, 2010, 20, S249-S252.	2.6	7
141	Cognitive deficits in middleâ€aged and older adults with bipolar disorder and cognitive complaints: Comparison with mild cognitive impairment. International Journal of Geriatric Psychiatry, 2009, 24, 624-631.	2.7	11
142	Memory complaints in healthy young and elderly adults: Reliability of memory reporting. Aging and Mental Health, 2008, 12, 177-182.	2.8	96
143	The neuroprotective effects of caffeine. Neurology, 2007, 69, 536-545.	1.1	320
144	Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and â€æfine tuning―modulation. Progress in Neurobiology, 2007, 83, 310-331.	5.7	232

#	Article	IF	CITATIONS
145	Verbal learning and memory deficits in Mild Cognitive Impairment. Journal of Clinical and Experimental Neuropsychology, 2007, 29, 187-197.	1.3	85
146	Aging and Cognitive Decline: Neuroprotective Strategies. , 2007, , 245-268.		0
147	Does caffeine modify corticomotor excitability?. Neurophysiologie Clinique, 2006, 36, 219-226.	2.2	48
148	Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience, 2006, 138, 1195-1203.	2.3	65
149	Interaction Between P2X and Nicotinic Acetylcholine Receptors in Glutamate Nerve Terminals of the Rat Hippocampus. Journal of Molecular Neuroscience, 2006, 30, 173-176.	2.3	17
150	Mild Cognitive Impairment: Deficits in Cognitive Domains Other than Memory. Dementia and Geriatric Cognitive Disorders, 2006, 21, 284-290.	1.5	74
151	Clinical significance of subcortical vascular disease in patients with mild cognitive impairment. European Journal of Neurology, 2005, 12, 125-130.	3.3	43
152	Long-term depression is not modulated by ATP receptors in the rat CA1 hippocampal region. Neuroscience Letters, 2005, 383, 345-349.	2.1	6
153	Mild Cognitive Impairment: Focus on Diagnosis. Journal of Molecular Neuroscience, 2004, 23, 143-148.	2.3	15
154	Decrease of adenosine A $<$ sub $>$ 1 $<$ /sub $>$ receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. European Journal of Neuroscience, 2003, 18, 820-828.	2.6	108
155	Adenosine promotes neuronal recovery from reactive oxygen species induced lesion in rat hippocampal slices. Neuroscience Letters, 2003, 339, 127-130.	2.1	43
156	Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience, 2003, 122, 111-121.	2.3	53
157	Enhanced Adenosine A2A Receptor Facilitation of Synaptic Transmission in the Hippocampus of Aged Rats. Journal of Neurophysiology, 2003, 90, 1295-1303.	1.8	97
158	Participation of adenosine receptors in neuroprotection. Drug News and Perspectives, 2003, 16, 80.	1.5	77
159	Adenosine receptors in the nervous system: pathophysiological implications. Progress in Neurobiology, 2002, 68, 377-392.	5.7	452
160	Persistence of the neuromodulatory effects of adenosine on synaptic transmission after long-term potentiation and long-term depression. Brain Research, 2002, 932, 56-60.	2.2	18
161	Effects of Carbamazepine and Novel 10,11-Dihydro-5H -Dibenz[b,f]Azepine-5-Carboxamide Derivatives on Synaptic Transmission in Rat Hippocampal Slices. Basic and Clinical Pharmacology and Toxicology, 2002, 90, 208-213.	0.0	17
162	Does caffeine intake protect from Alzheimer's disease?. European Journal of Neurology, 2002, 9, 377-382.	3.3	317

#	Article	IF	Citations
163	A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neuroscience Letters, 2001, 302, 53-57.	2.1	46
164	Adenosine and synaptic plasticity. Drug Development Research, 2001, 52, 283-290.	2.9	41
165	Neuroprotection during hypoxic insults: Role of adenosine. Drug Development Research, 2001, 52, 291-295.	2.9	10
166	Adenosine receptor interactions in the hippocampus. Drug Development Research, 2001, 52, 337-345.	2.9	10
167	Presynaptic inhibitory receptors mediate the depression of synaptic transmission upon hypoxia in rat hippocampal slices. Brain Research, 2000, 869, 158-165.	2.2	48
168	Adenosine: does it have a neuroprotective role after all?. Brain Research Reviews, 2000, 33, 258-274.	9.0	224
169	Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-d-aspartate receptor-dependent. Neuroscience Letters, 2000, 291, 81-84.	2.1	38
170	Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Research, 1999, 851, 228-234.	2.2	66
171	An Adenosine Analogue Inhibits NMDA Receptor-Mediated Responses in Bipolar Cells of the Rat Retina. Experimental Eye Research, 1999, 68, 367-370.	2.6	26
172	Endogenous Adenosine Attenuates Long-term Depression and Depotentiation in the CA1 Region of the Rat Hippocampus. Neuropharmacology, 1997, 36, 161-167.	4.1	73
173	Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus. British Journal of Pharmacology, 1997, 121, 1541-1548.	5.4	29
174	Magnetic stimulation in Alzheimer's disease. Journal of Neurology, 1997, 244, 304-307.	3.6	60
175	Adenosine and neuronal plasticity. Life Sciences, 1996, 60, 245-251.	4.3	84
176	Adenosine by activating A1 receptors prevents GABAA-mediated actions during hypoxia in the rat hippocampus. Brain Research, 1996, 732, 261-266.	2.2	31
177	Control of NMDA receptors by adenosine: A new connection between coffee and excitation?. NeuroReport, 1995, 6, 1079.	1.2	O
178	Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. NeuroReport, 1995, 6, 1097-1100.	1.2	153
179	1,3-Dipropyl-8-cyclopentylxanthine attenuates the NMDA response to hypoxia in the rat hippocampus. Brain Research, 1994, 661, 265-273.	2.2	32
180	Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience, 1994, 62, 385-390.	2.3	121

#	Article	IF	CITATIONS
181	Adenosine inhibits the NMDA receptor-mediated excitatory postsynaptic potential in the hippocampus. Brain Research, 1993, 606, 351-356.	2.2	64
182	2-Chloroadenosine decreases long-term potentiation in the hippocampal CA1 area of the rat. Neuroscience Letters, 1990, 118, 107-111.	2.1	49