Josh Van Buskirk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2627277/publications.pdf

Version: 2024-02-01

70 papers

5,867 citations

37 h-index

94433

95266 68 g-index

71 all docs

71 docs citations

times ranked

71

5063 citing authors

#	Article	IF	CITATIONS
1	A review on trade-offs at the warm and cold ends of geographical distributions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210022.	4.0	29
2	Adaptation to elevation but limited local adaptation in an amphibian*. Evolution; International Journal of Organic Evolution, 2021, 75, 956-969.	2.3	13
3	Ecological causes of fluctuating natural selection on habitat choice in an amphibian. Evolution; International Journal of Organic Evolution, 2021, 75, 1862-1877.	2.3	2
4	European common frog (<i>Rana temporaria</i>) recolonized Switzerland from multiple glacial refugia in northern Italy via trans―and circumâ€Alpine routes. Ecology and Evolution, 2021, 11, 15984-15994.	1.9	3
5	Gene Flow Limits Adaptation along Steep Environmental Gradients. American Naturalist, 2020, 195, E67-E86.	2.1	40
6	Demographic Processes Linked to Genetic Diversity and Positive Selection across a Species' Range. Plant Communications, 2020, 1, 100111.	7.7	13
7	Relative importance of isolationâ€byâ€environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 2020, 74, 962-978.	2.3	20
8	Predator―nduced changes in the chemical defence of a vertebrate. Journal of Animal Ecology, 2019, 88, 1925-1935.	2.8	13
9	A Practical Guide to the Study of Distribution Limits. American Naturalist, 2019, 193, 773-785.	2.1	28
10	Accumulation of Mutational Load at the Edges of a Species Range. Molecular Biology and Evolution, 2018, 35, 781-791.	8.9	86
11	Is bigger really better? Relative and absolute body size influence individual growth rate under competition. Ecology and Evolution, 2017, 7, 3745-3750.	1.9	13
12	Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution; International Journal of Organic Evolution, 2017, 71, 1670-1685.	2.3	26
13	Responses to nitrate pollution, warming and density inÂcommonÂfrogÂtadpoles (Rana temporaria). Amphibia - Reptilia, 2016, 37, 45-54.	0.5	9
14	Isocline analysis of competition predicts stable coexistence of two amphibians. Oecologia, 2015, 178, 153-159.	2.0	9
15	The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia, 2015, 179, 699-710.	2.0	74
16	The Rate of Degradation of Chemical Cues Indicating Predation Risk: An Experiment and Review. Ethology, 2014, 120, 942-949.	1.1	56
17	Inducible chemical defences in animals. Oikos, 2014, 123, 1025-1028.	2.7	19
18	Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Research, 2014, 61, 109-121.	1.1	20

#	Article	IF	CITATIONS
19	Changes in the annual cycle of North American raptors associated with recent shifts in migration timing. Auk, 2012, 129, 691-698.	1.4	26
20	Permeability of the landscape matrix between amphibian breeding sites. Ecology and Evolution, 2012, 2, 3160-3167.	1.9	57
21	Phenotypic plasticity alone cannot explain climateâ€induced change in avian migration timing. Ecology and Evolution, 2012, 2, 2430-2437.	1.9	39
22	Non-interactive multiple predator effects on tadpole survival. Oecologia, 2012, 169, 535-539.	2.0	16
23	Influence of experimental venue on phenotype: multiple traits reveal multiple answers. Functional Ecology, 2012, 26, 513-521.	3.6	25
24	Visual cues contribute to predator detection in anuran larvae. Biological Journal of the Linnean Society, 2012, 106, 820-827.	1.6	47
25	Behavioural plasticity and environmental change. , 2012, , 145-158.		56
26	Amphibian phenotypic variation along a gradient in canopy cover: species differences and plasticity. Oikos, 2011, 120, 906-914.	2.7	17
27	Prey risk assessment depends on conspecific density. Oikos, 2011, 120, 1235-1239.	2.7	42
28	Declining body sizes in North American birds associated with climate change. Oikos, 2010, 119, 1047-1055.	2.7	106
29	Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Global Change Biology, 2009, 15, 760-771.	9.5	158
30	The fitness costs of developmental canalization and plasticity. Journal of Evolutionary Biology, 2009, 22, 852-860.	1.7	251
31	Getting in shape: adaptation and phylogenetic inertia in morphology of Australian anuran larvae. Journal of Evolutionary Biology, 2009, 22, 1326-1337.	1.7	25
32	Natural variation in morphology of larval amphibians: Phenotypic plasticity in nature?. Ecological Monographs, 2009, 79, 681-705.	5.4	93
33	Predator-Induced Changes in Metabolism Cannot Explain the Growth/Predation Risk Tradeoff. PLoS ONE, 2009, 4, e6160.	2.5	73
34	Environmental stress and the costs of wholeâ€organism phenotypic plasticity in tadpoles. Journal of Evolutionary Biology, 2008, 21, 97-103.	1.7	40
35	DELAYED COSTS OF AN INDUCED DEFENSE IN TADPOLES? MORPHOLOGY, HOPPING, AND DEVELOPMENT RATE AT METAMORPHOSIS. Evolution; International Journal of Organic Evolution, 2007, 55, 821-829.	2.3	3
36	Body size, competitive interactions, and the local distribution of Triturus newts. Journal of Animal Ecology, 2007, 76, 559-567.	2.8	21

#	Article	IF	CITATIONS
37	Limits to the Adaptive Potential of Small Populations. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 433-458.	8.3	705
38	THE CHANGE IN QUANTITATIVE GENETIC VARIATION WITH INBREEDING. Evolution; International Journal of Organic Evolution, 2006, 60, 2428.	2.3	37
39	THE CHANGE IN QUANTITATIVE GENETIC VARIATION WITH INBREEDING. Evolution; International Journal of Organic Evolution, 2006, 60, 2428-2434.	2.3	52
40	The change in quantitative genetic variation with inbreeding. Evolution; International Journal of Organic Evolution, 2006, 60, 2428-34.	2.3	20
41	Meta-Analysis of Farmland Biodiversity within Set-Aside Land: Reply to Kleijn and Baldi. Conservation Biology, 2005, 19, 967-968.	4.7	7
42	Habitat specialization and adaptive phenotypic divergence of anuran populations. Journal of Evolutionary Biology, 2005, 18, 596-608.	1.7	79
43	Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1333-1338.	2.6	34
44	LOCAL AND LANDSCAPE INFLUENCE ON AMPHIBIAN OCCURRENCE AND ABUNDANCE. Ecology, 2005, 86, 1936-1947.	3.2	258
45	A Threefold Genetic Allee Effect. Genetics, 2005, 169, 2255-2265.	2.9	101
46	Enhancement of Farmland Biodiversity within Set-Aside Land. Conservation Biology, 2004, 18, 987-994.	4.7	176
47	Bold Tail Coloration Protects Tadpoles from Dragonfly Strikes. Copeia, 2004, 2004, 599-602.	1.3	39
48	Di- and tetranucleotide microsatellite markers for the Alpine newt (Triturus alpestris): characterization and cross-priming in five congeners. Molecular Ecology Notes, 2003, 3, 186-188.	1.7	18
49	Habitat partitioning in European and North American pond-breeding frogs and toads. Diversity and Distributions, 2003, 9, 399-410.	4.1	62
50	The Lure Effect, Tadpole Tail Shape, and the Target of Dragonfly Strikes. Journal of Herpetology, 2003, 37, 420-424.	0.5	117
51	A test of the risk allocation hypothesis: tadpole responses to temporal change in predation risk. Behavioral Ecology, 2002, 13, 526-530.	2.2	57
52	DOSAGE RESPONSE OF AN INDUCED DEFENSE: HOW SENSITIVE ARE TADPOLES TO PREDATION RISK?. Ecology, 2002, 83, 1580-1585.	3.2	147
53	A Comparative Test of the Adaptive Plasticity Hypothesis: Relationships between Habitat and Phenotype in Anuran Larvae. American Naturalist, 2002, 160, 87-102.	2.1	211
54	PHENOTYPIC LABILITY AND THE EVOLUTION OF PREDATOR-INDUCED PLASTICITY IN TADPOLES. Evolution; International Journal of Organic Evolution, 2002, 56, 361-370.	2.3	83

#	Article	IF	CITATIONS
55	Specific induced responses to different predator species in anuran larvae. Journal of Evolutionary Biology, 2001, 14, 482-489.	1.7	145
56	PREDATOR-INDUCED PHENOTYPIC PLASTICITY IN LARVAL NEWTS: TRADE-OFFS, SELECTION, AND VARIATION IN NATURE. Ecology, 2000, 81, 3009-3028.	3.2	129
57	THE COSTS OF AN INDUCIBLE DEFENSE IN ANURAN LARVAE. Ecology, 2000, 81, 2813-2821.	3.2	147
58	The Costs of an Inducible Defense in Anuran Larvae. Ecology, 2000, 81, 2813.	3.2	94
59	Predator-Induced Phenotypic Plasticity in Larval Newts: Trade-Offs, Selection, and Variation in Nature. Ecology, 2000, 81, 3009.	3.2	60
60	Plasticity and Selection Explain Variation in Tadpole Phenotype between Ponds with Different Predator Composition. Oikos, 1999, 85, 31.	2.7	67
61	HABITAT HETEROGENEITY, DISPERSAL, AND LOCAL RISK OF EXPOSURE TO LYME DISEASE. , 1998, 8, 365-378.		48
62	Natural Selection for Environmentally Induced Phenotypes in Tadpoles. Evolution; International Journal of Organic Evolution, 1997, 51, 1983.	2.3	118
63	NATURAL SELECTION FOR ENVIRONMENTALLY INDUCED PHENOTYPES IN TADPOLES. Evolution; International Journal of Organic Evolution, 1997, 51, 1983-1992.	2.3	179
64	Costs and Benefits of a Predator-Induced Polyphenism in the Gray Treefrog Hyla chrysoscelis. Evolution; International Journal of Organic Evolution, 1996, 50, 583.	2.3	145
65	COSTS AND BENEFITS OF A PREDATORâ€INDUCED POLYPHENISM IN THE GRAY TREEFROG <i>HYLA CHRYSOSCELIS</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 583-593.	2.3	263
66	Simplifying the Jargon of Community Ecology: A Conceptual Approach. American Naturalist, 1996, 147, 282-286.	2.1	352
67	Phenotypic Design, Plasticity, and Ecological Performance in Two Tadpole Species. American Naturalist, 1995, 145, 211-233.	2.1	160
68	Population Consequences of Larval Crowding in the Dragonfly Aeshna Juncea. Ecology, 1993, 74, 1950-1958.	3.2	28
69	Competition, Cannibalism, and Size Class Dominance in a Dragonfly. Oikos, 1992, 65, 455.	2.7	61
70	Density-Dependent Population Regulation in a Salamander. Ecology, 1991, 72, 1747-1756.	3.2	95