## Shripad Tuljapurkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/262666/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mutations and the Distribution of Lifetime Reproductive Success. Journal of the Indian Institute of Science, 2022, 102, 1269-1275.                                                                  | 1.9 | 0         |
| 2  | Modeling extreme climatic events using the generalized extreme value (GEV) distribution. Handbook of Statistics, 2021, , 39-71.                                                                     | 0.6 | 9         |
| 3  | The changing trend of life expectancy for the Chinese elderly and its rural–urban disparity. China<br>Population and Development Studies, 2021, 5, 25-40.                                           | 1.4 | 0         |
| 4  | Distributions of LRS in varying environments. Ecology Letters, 2021, 24, 1328-1340.                                                                                                                 | 6.4 | 8         |
| 5  | Gompertz law revisited: Forecasting mortality with a multi-factor exponential model. Insurance:<br>Mathematics and Economics, 2021, 99, 268-281.                                                    | 1.2 | 4         |
| 6  | Demographic determinants of the phenotypic mother–offspring correlation. Ecological Monographs, 2021, 91, e01479.                                                                                   | 5.4 | 2         |
| 7  | Quantifying the effect of genetic, environmental and individual demographic stochastic variability for population dynamics in Plantago lanceolata. Scientific Reports, 2021, 11, 23174.             | 3.3 | 7         |
| 8  | Relative contributions of fixed and dynamic heterogeneity to variation in lifetime reproductive success in kestrels ( <scp><i>Falco tinnunculus</i></scp> ). Population Ecology, 2020, 62, 408-424. | 1.2 | 7         |
| 9  | Lifeâ€history strategy varies with the strength of competition in a foodâ€limited ungulate population.<br>Ecology Letters, 2020, 23, 811-820.                                                       | 6.4 | 17        |
| 10 | Skewed distributions of lifetime reproductive success: beyond mean and variance. Ecology Letters, 2020, 23, 748-756.                                                                                | 6.4 | 29        |
| 11 | Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain.<br>Theoretical Population Biology, 2020, 133, 159-167.                                    | 1.1 | 4         |
| 12 | How climate affects extreme events and hence ecological population models. Ecology, 2019, 100, e02684.                                                                                              | 3.2 | 8         |
| 13 | Age distribution, trends, and forecasts of under-5 mortality in 31 sub-Saharan African countries: A<br>modeling study. PLoS Medicine, 2019, 16, e1002757.                                           | 8.4 | 50        |
| 14 | Stochastic Models for Structured Populations. Handbook of Statistics, 2019, , 133-155.                                                                                                              | 0.6 | 2         |
| 15 | Climate, rather than human disturbance, is the main driver of age-specific mortality trajectories in a tropical tree. Ecological Modelling, 2019, 400, 34-40.                                       | 2.5 | 5         |
| 16 | Machine learning approaches to the social determinants of health in the health and retirement study.<br>SSM - Population Health, 2018, 4, 95-99.                                                    | 2.7 | 67        |
| 17 | Advancing front of old-age human survival. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11209-11214.                                                 | 7.1 | 40        |
| 18 | Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection. Malaria                                                                                                     | 2.3 | 9         |

SHRIPAD TULJAPURKAR

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Poverty dynamics, poverty thresholds and mortality: An age-stage Markovian model. PLoS ONE, 2018, 13, e0195734.                                                             | 2.5  | 17        |
| 20 | Equity and length of lifespan are not the same. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8420-8423.                      | 7.1  | 28        |
| 21 | Des différences, pourquoi? Transmission, maintenance and effects of phenotypic variance. Journal of<br>Animal Ecology, 2016, 85, 356-370.                                   | 2.8  | 16        |
| 22 | Racial and Socioeconomic Variation in Genetic Markers of Telomere Length: A Cross-Sectional Study of U.S. Older Adults. EBioMedicine, 2016, 11, 296-301.                    | 6.1  | 27        |
| 23 | Distinct genomic architecture of Plasmodium falciparum populations from South Asia. Molecular and Biochemical Parasitology, 2016, 210, 1-4.                                 | 1.1  | 12        |
| 24 | Reply to Yang et al.: GCTA produces unreliable heritability estimates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4581.   | 7.1  | 7         |
| 25 | Demographic and clinical profiles of Plasmodium falciparum and Plasmodium vivax patients at a tertiary care centre in southwestern India. Malaria Journal, 2016, 15, 569.   | 2.3  | 22        |
| 26 | Linking demographic responses and life history tactics from longitudinal data in mammals. Oikos, 2016, 125, 395-404.                                                        | 2.7  | 12        |
| 27 | The effects of asymmetric competition on the life history of Trinidadian guppies. Ecology Letters, 2016, 19, 268-278.                                                       | 6.4  | 47        |
| 28 | Limitations of GCTA as a solution to the missing heritability problem. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E61-70.  | 7.1  | 84        |
| 29 | Quantifying the influence of measured and unmeasured individual differences on demography. Journal of Animal Ecology, 2015, 84, 1434-1445.                                  | 2.8  | 30        |
| 30 | Measuring selective constraint on fertility in human life histories. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8982-8986. | 7.1  | 17        |
| 31 | Deciphering life history transcriptomes in different environments. Molecular Ecology, 2015, 24, 151-179.                                                                    | 3.9  | 20        |
| 32 | Sexâ€specific demography and generalization of the Trivers–Willard theory. Nature, 2015, 526, 249-252.                                                                      | 27.8 | 69        |
| 33 | Influence of Life-History Tactics on Transient Dynamics: A Comparative Analysis across Mammalian<br>Populations. American Naturalist, 2014, 184, 673-683.                   | 2.1  | 58        |
| 34 | Generation Time, Net Reproductive Rate, and Growth in Stage-Age-Structured Populations. American<br>Naturalist, 2014, 183, 771-783.                                         | 2.1  | 55        |
| 35 | The Invisible Cliff: Abrupt Imposition of Malthusian Equilibrium in a Natural-Fertility, Agrarian Society.<br>PLoS ONE, 2014, 9, e87541.                                    | 2.5  | 34        |
| 36 | Beyond the mean: sensitivities of the variance of population growth. Methods in Ecology and Evolution, 2013, 4, 290-298.                                                    | 5.2  | 8         |

SHRIPAD TULJAPURKAR

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Defoliation and bark harvesting affect lifeâ€history traits of a tropical tree. Journal of Ecology, 2013, 101, 1563-1571.                                                                     | 4.0  | 26        |
| 38 | Contributions of Covariance: Decomposing the Components of Stochastic Population Growth in <i>Cypripedium calceolus</i> . American Naturalist, 2013, 181, 410-420.                            | 2.1  | 21        |
| 39 | Mutations and the age pattern of death. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, 10057-10058.                                           | 7.1  | Ο         |
| 40 | Neutral theory for life histories and individual variability in fitness components. Proceedings of the<br>National Academy of Sciences of the United States of America, 2012, 109, 4684-4689. | 7.1  | 100       |
| 41 | Structured Population Models: Introduction. Theoretical Population Biology, 2012, 82, 241-243.                                                                                                | 1.1  | 4         |
| 42 | Linking the population growth rate and the age-at-death distribution. Theoretical Population Biology, 2012, 82, 244-252.                                                                      | 1.1  | 14        |
| 43 | Trading stages: Life expectancies in structured populations. Experimental Gerontology, 2012, 47, 773-781.                                                                                     | 2.8  | 26        |
| 44 | Editorial for the Special Issue: Biodemographic determinants of lifespan. Experimental Gerontology,<br>2012, 47, 755-758.                                                                     | 2.8  | 0         |
| 45 | Stochastic LTRE analysis of the effects of herbivory on the population dynamics of a perennial grassland herb. Oikos, 2012, 121, 211-218.                                                     | 2.7  | 15        |
| 46 | Static and dynamic expression of life history traits in the northern fulmar <i>Fulmarus glacialis</i> .<br>Oikos, 2011, 120, 369-380.                                                         | 2.7  | 27        |
| 47 | Demography as the Human Story. Population and Development Review, 2011, 37, 166-171.                                                                                                          | 2.1  | 1         |
| 48 | Derivatives of the stochastic growth rate. Theoretical Population Biology, 2011, 80, 1-15.                                                                                                    | 1.1  | 12        |
| 49 | Variance in death and its implications for modeling and forecasting mortality. Demographic Research, 2011, 24, 497-526.                                                                       | 3.0  | 43        |
| 50 | Demographic effects of extreme weather events on a shortâ€lived calcareous grassland species:<br>stochastic life table response experiments. Journal of Ecology, 2010, 98, 255-267.           | 4.0  | 49        |
| 51 | Environmental variance, population growth and evolution. Journal of Animal Ecology, 2010, 79, 1-3.                                                                                            | 2.8  | 12        |
| 52 | Dynamic heterogeneity and life history variability in the kittiwake. Journal of Animal Ecology, 2010, 79,<br>436-444.                                                                         | 2.8  | 69        |
| 53 | Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 2010, 79, 1226-1240.                                      | 2.8  | 177       |
| 54 | Coupled dynamics of body mass and population growth in response to environmental change. Nature, 2010, 466, 482-485.                                                                          | 27.8 | 518       |

Shripad Tuljapurkar

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Dynamic heterogeneity and life histories. Annals of the New York Academy of Sciences, 2010, 1204,<br>65-72.                                                   | 3.8  | 15        |
| 56 | Plant populations track rather than buffer climate fluctuations. Ecology Letters, 2010, 13, 736-743.                                                          | 6.4  | 80        |
| 57 | A New Way to Integrate Selection When Both Demography and Selection Gradients Vary over Time.<br>International Journal of Plant Sciences, 2010, 171, 945-959. | 1.3  | 9         |
| 58 | A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology, 2009, 90, 2766-2778.           | 3.2  | 67        |
| 59 | From stochastic environments to life histories and back. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2009, 364, 1499-1509.     | 4.0  | 134       |
| 60 | Population and prehistory III: Food-dependent demography in variable environments. Theoretical Population Biology, 2009, 76, 179-188.                         | 1.1  | 34        |
| 61 | Babies make a comeback. Nature, 2009, 460, 693-694.                                                                                                           | 27.8 | 7         |
| 62 | Dynamic heterogeneity in life histories. Ecology Letters, 2009, 12, 93-106.                                                                                   | 6.4  | 140       |
| 63 | The Dynamics of Phenotypic Change and the Shrinking Sheep of St. Kilda. Science, 2009, 325, 464-467.                                                          | 12.6 | 271       |
| 64 | Estimating stochastic elasticities directly from longitudinal data. Ecology Letters, 2009, 12, 806-812.                                                       | 6.4  | 13        |
| 65 | Senescence rates are determined by ranking on the fast–slow lifeâ€history continuum. Ecology Letters, 2008, 11, 664-673.                                      | 6.4  | 317       |
| 66 | Population and prehistory I: Food-dependent population growth in constant environments.<br>Theoretical Population Biology, 2008, 73, 473-482.                 | 1.1  | 58        |
| 67 | Population and prehistory II: Space-limited human populations in constant environments. Theoretical<br>Population Biology, 2008, 74, 147-160.                 | 1.1  | 52        |
| 68 | LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY.<br>Ecology, 2008, 89, 19-25.                                         | 3.2  | 386       |
| 69 | The Dynamics of a Quantitative Trait in an Ageâ€Structured Population Living in a Variable Environment.<br>American Naturalist, 2008, 172, 599-612.           | 2.1  | 96        |
| 70 | Evolution of Delayed Reproduction in Uncertain Environments: A Lifeâ€History Perspective. American<br>Naturalist, 2008, 172, 797-805.                         | 2.1  | 68        |
| 71 | Stage Dynamics, Period Survival, and Mortality Plateaus. American Naturalist, 2008, 172, 203-215.                                                             | 2.1  | 56        |
| 72 | How can economic schemes curtail the increasing sex ratio at birth in China?. Demographic Research, 2008, 19, 1831-1850.                                      | 3.0  | 17        |

SHRIPAD TULJAPURKAR

| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Evolutionary Demography of Ecological Change: Linking Trait Variation and Population Growth.<br>Science, 2007, 315, 1571-1574.                             | 12.6 | 196       |
| 74 | Why Men Matter: Mating Patterns Drive Evolution of Human Lifespan. PLoS ONE, 2007, 2, e785.                                                                    | 2.5  | 104       |
| 75 | Using the Lee-Carter Method to Forecast Mortality for Populations with Limited Data*. International Statistical Review, 2007, 72, 19-36.                       | 1.9  | 60        |
| 76 | Time, transients and elasticity. Ecology Letters, 2007, 10, 1143-1153.                                                                                         | 6.4  | 41        |
| 77 | Detecting variability in demographic rates: randomization with the Kullback–Leibler distance. Journal of Ecology, 2007, 95, 1370-1380.                         | 4.0  | 5         |
| 78 | FROM STAGE TO AGE IN VARIABLE ENVIRONMENTS: LIFE EXPECTANCY AND SURVIVORSHIP. Ecology, 2006, 87, 1497-1509.                                                    | 3.2  | 57        |
| 79 | Temporal autocorrelation and stochastic population growth. Ecology Letters, 2006, 9, 327-337.                                                                  | 6.4  | 91        |
| 80 | Sensitivity of the population growth rate to demographic variability within and between phases of the disturbance cycle. Ecology Letters, 2006, 9, 1331-1341.  | 6.4  | 30        |
| 81 | Risky Business: Temporal and Spatial Variation in Preindustrial Dryland Agriculture. Human Ecology, 2006, 34, 739-763.                                         | 1.4  | 51        |
| 82 | PLANT–ANIMAL INTERACTIONS IN RANDOM ENVIRONMENTS: HABITAT-STAGE ELASTICITY, SEED PREDATORS, AND HURRICANES. Ecology, 2005, 86, 3312-3322.                      | 3.2  | 53        |
| 83 | Inequality in Life Spans and a New Perspective on Mortality Convergence Across Industrialized Countries. Population and Development Review, 2005, 31, 645-674. | 2.1  | 218       |
| 84 | Elasticities in Variable Environments: Properties and Implications. American Naturalist, 2005, 166, 481-495.                                                   | 2.1  | 69        |
| 85 | Future Mortality: A Bumpy Road to Shangri-La?. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, pe9-pe9.                                           | 0.8  | 14        |
| 86 | Demography in the 21st century: Introduction. Theoretical Population Biology, 2004, 65, 317.                                                                   | 1.1  | 1         |
| 87 | The Many Growth Rates and Elasticities of Populations in Random Environments. American Naturalist, 2003, 162, 489-502.                                         | 2.1  | 223       |
| 88 | Reproductive Effort in Variable Environments, or Environmental Variation Is for the Birds. Ecology, 2001, 82, 2659.                                            | 3.2  | 50        |
| 89 | Sex ratio at birth and son preference. Mathematical Population Studies, 2000, 8, 91-107.                                                                       | 2.2  | 19        |
| 90 | A universal pattern of mortality decline in the G7 countries. Nature, 2000, 405, 789-792.                                                                      | 27.8 | 415       |

Shripad Tuljapurkar

| #   | Article                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Escape in time: stay young or age gracefully?. Ecological Modelling, 2000, 133, 143-159.                                                                      | 2.5  | 40        |
| 92  | The solution of timeâ€dependent population models. Mathematical Population Studies, 2000, 7, 311-329.                                                         | 2.2  | 23        |
| 93  | Population momentum for gradual demographic transitions. Population Studies, 1999, 53, 255-262.                                                               | 2.1  | 32        |
| 94  | Validation, probability-weighted priors, and information in stochastic forecasts. International<br>Journal of Forecasting, 1999, 15, 259-271.                 | 6.5  | 20        |
| 95  | Mortality Change and Forecasting. North American Actuarial Journal, 1998, 2, 13-47.                                                                           | 1.4  | 67        |
| 96  | Taking the measure of uncertainty. Nature, 1997, 387, 760-761.                                                                                                | 27.8 | 8         |
| 97  | Death and Taxes: Longer life, consumption, and social security. Demography, 1997, 34, 67-81.                                                                  | 2.5  | 72        |
| 98  | Disaggregatton in population forecasting: Do we need it? And how to do it simply. Mathematical<br>Population Studies, 1995, 5, 217-234.                       | 2.2  | 16        |
| 99  | Stochastic Population Forecasts for the United States: Beyond High, Medium, and Low. Journal of the American Statistical Association, 1994, 89, 1175-1189.    | 3.1  | 195       |
| 100 | Migration in Variable Environments: Exploring Life-history Evolution Using Structured Population<br>Models. Journal of Theoretical Biology, 1994, 166, 75-90. | 1.7  | 55        |
| 101 | Loop Analysis: Evaluating Life History Pathways in Population Projection Matrices. Ecology, 1994, 75, 2410.                                                   | 3.2  | 90        |
| 102 | Stochastic Population Forecasts for the United States: Beyond High, Medium, and Low. Journal of the<br>American Statistical Association, 1994, 89, 1175.      | 3.1  | 33        |
| 103 | Entropy and convergence in dynamics and demography. Journal of Mathematical Biology, 1993, 31, 253-271.                                                       | 1.9  | 15        |
| 104 | Stochastic population forecasts and their uses. International Journal of Forecasting, 1992, 8, 385-391.                                                       | 6.5  | 25        |
| 105 | Disease in changing populations: Growth and disequilibrium. Theoretical Population Biology, 1991, 40, 322-353.                                                | 1.1  | 16        |
| 106 | Population Dynamics in Variable Environments. Lecture Notes in Biomathematics, 1990, , .                                                                      | 0.3  | 431       |
| 107 | An uncertain life: Demography in random environments. Theoretical Population Biology, 1989, 35, 227-294.                                                      | 1.1  | 238       |
| 108 | Population Dynamics in Variable Environments. VII. The Demography and Evolution of Iteroparity.<br>American Naturalist, 1989, 133, 901-923.                   | 2.1  | 152       |

| #   | Article                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cycles in nonlinear age-structured models I. Renewal equations. Theoretical Population Biology, 1987, 32, 26-41.            | 1.1 | 32        |
| 110 | Demography in stochastic environments. Journal of Mathematical Biology, 1986, 24, 569-581.                                  | 1.9 | 25        |
| 111 | Population dynamics in variable environments. VI. Cyclical environments. Theoretical Population Biology, 1985, 28, 1-17.    | 1.1 | 39        |
| 112 | Convergence in male and female life expectancy: Direction, age pattern, and causes. Demographic Research, 0, 34, 1063-1074. | 3.0 | 6         |