Shuodao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2625092/publications.pdf Version: 2024-02-01

SHUODAO WANC

#	Article	IF	CITATIONS
1	Epidermal Electronics. Science, 2011, 333, 838-843.	12.6	3,944
2	A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454, 748-753.	27.8	1,211
3	Multifunctional Epidermal Electronics Printed Directly Onto the Skin. Advanced Materials, 2013, 25, 2773-2778.	21.0	714
4	Ultrathin silicon solar microcells for semitransparent, mechanically flexible andÂmicroconcentrator module designs. Nature Materials, 2008, 7, 907-915.	27.5	615
5	Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Advanced Functional Materials, 2008, 18, 2673-2684.	14.9	398
6	Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nature Communications, 2012, 3, 916.	12.8	292
7	Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. Advanced Functional Materials, 2014, 24, 2028-2037.	14.9	273
8	Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements. Small, 2009, 5, 2703-2709.	10.0	233
9	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19910-19915.	7.1	209
10	Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics. Advanced Functional Materials, 2013, 23, 3299-3306.	14.9	199
11	Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12998-13003.	7.1	197
12	Mechanics of Epidermal Electronics. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	161
13	Mechanics of noncoplanar mesh design for stretchable electronic circuits. Journal of Applied Physics, 2009, 105, .	2.5	143
14	Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nature Materials, 2014, 13, 593-598.	27.5	143
15	Thin, Flexible Sensors and Actuators as â€~Instrumented' Surgical Sutures for Targeted Wound Monitoring and Therapy. Small, 2012, 8, 3263-3268.	10.0	141
16	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	21.0	141
17	Active, Programmable Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing. Advanced Functional Materials, 2012, 22, 4476-4484.	14.9	135
18	Mechanically Reinforced Skinâ€Electronics with Networked Nanocomposite Elastomer. Advanced Materials, 2016, 28, 10257-10265.	21.0	108

Shuodao Wang

#	Article	IF	CITATIONS
19	Micromechanics and Advanced Designs for Curved Photodetector Arrays in Hemispherical Electronicâ€Eye Cameras. Small, 2010, 6, 851-856.	10.0	94
20	Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Applied Physics Letters, 2009, 94, .	3.3	92
21	Elasticity of Fractal Inspired Interconnects. Small, 2015, 11, 367-373.	10.0	84
22	Mechanics of curvilinear electronics. Soft Matter, 2010, 6, 5757.	2.7	74
23	Local versus global buckling of thin films on elastomeric substrates. Applied Physics Letters, 2008, 93,	3.3	73
24	Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy and Environmental Science, 2010, 3, 208.	30.8	65
25	Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1201-1218.	2.5	61
26	Buckling analysis in stretchable electronics. Npj Flexible Electronics, 2017, 1, .	10.7	57
27	Mechanics of Interfacial Delamination in Epidermal Electronics Systems. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	46
28	Device Architectures for Enhanced Photon Recycling in Thinâ€Film Multijunction Solar Cells. Advanced Energy Materials, 2015, 5, 1400919.	19.5	41
29	Transfer printing of fully formed thinâ€film microscale GaAs lasers on silicon with a thermally conductive interface material. Laser and Photonics Reviews, 2015, 9, L17.	8.7	36
30	Theoretical and experimental study of 2D conformability of stretchable electronics laminated onto skin. Science China Technological Sciences, 2017, 60, 1415-1422.	4.0	31
31	Mechanics of stretchable electronics on balloon catheter under extreme deformation. International Journal of Solids and Structures, 2014, 51, 1555-1561.	2.7	28
32	Mechanics of hemispherical electronics. Applied Physics Letters, 2009, 95, 181912.	3.3	19
33	Multi-Functional Electronics: Multifunctional Epidermal Electronics Printed Directly Onto the Skin (Adv. Mater. 20/2013). Advanced Materials, 2013, 25, 2772-2772.	21.0	16
34	Adhesion-governed buckling of thin-film electronics on soft tissues. Theoretical and Applied Mechanics Letters, 2016, 6, 6-10.	2.8	14
35	Nanomeshed Si nanomembranes. Npj Flexible Electronics, 2019, 3, .	10.7	12
36	A generalized solution procedure for in-plane free vibration of rectangular plates and annular sectorial plates. Royal Society Open Science, 2017, 4, 170484.	2.4	10

Shuodao Wang

#	Article	IF	CITATIONS
37	Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. Nanotechnology, 2019, 30, 394002.	2.6	10
38	Vibration analysis of nanorods by the Rayleigh-Ritz method and truncated Fourier series. Results in Physics, 2019, 12, 327-334.	4.1	9
39	An Improved Fourier–Ritz Method for Analyzing In-Plane Free Vibration of Sectorial Plates. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	2.2	8
40	Effects of thermo-magneto-electro nonlinearity characteristics on the stability of functionally graded piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 2020, 41, 313-326.	3.6	6
41	Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq1 1	0.784314 21.0	rgBŢ /Overloc
42	Wrinkling of Tympanic Membrane Under Unbalanced Pressure. Journal of Applied Mechanics, Transactions ASME, 2017, 84, 0410021-410026.	2.2	5
43	Mechanics of Periodic Film Cracking in Bilayer Structures Under Stretching. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	4
44	Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 48-61.	3.4	4
45	A unified procedure for free transverse vibration of rectangular and annular sectorial plates. Archive of Applied Mechanics, 2019, 89, 1485-1499.	2.2	4
46	Efficacy of a Yâ€Design Silastic Elastomer Intrauterine Device as a Horse Contraceptive. Journal of Wildlife Management, 2021, 85, 1169-1174.	1.8	4
47	Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	4
48	Theoretical predictions and evolutions of wrinkles in the film-intermediate layer-substrate structure under compression. International Journal of Solids and Structures, 2022, 250, 111699.	2.7	4
49	Shapeâ€Memory Polymers: Deformable, Programmable, and Shapeâ€Memorizing Microâ€Optics (Adv. Funct.) ⁻	1j ETQq1 1 14.9	0.784314 rg
50	Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2010, , 38-46.		2
51	Theory for Stretchable Interconnects. , 2012, , 1-29.		2
52	Analytical study of wrinkling in thin-film-on-elastomer system with finite substrate thickness. Applied Mathematics and Mechanics (English Edition), 2017, 38, 469-478.	3.6	2
53	Flexible, Stretchable, and Biodegradable Thin-Film Silicon Photovoltaics. , 2018, , 161-175.		1
54	Machine learning based inverse modeling of full-field strain distribution for mechanical characterization of a linear elastic and heterogeneous membrane. Mechanics of Materials, 2022, 165, 104134.	3.2	1

#	Article	IF	CITATIONS
55	High efficiency quadruple junction, four-terminal solar cells and modules by transfer printing. , 2014, , .		0
56	Printed high-efficiency quadruple-junction, four-terminal solar cells and modules for full spectrum utilization. , 2014, , .		0
57	Solar Cells: Device Architectures for Enhanced Photon Recycling in Thin-Film Multijunction Solar Cells (Adv. Energy Mater. 1/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	0