Neil J Grimsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2624938/publications.pdf

Version: 2024-02-01

394421 501196 1,851 47 19 28 citations g-index h-index papers 49 49 49 2956 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phosphoproteomic analysis of thrombin- and p38 MAPK-regulated signaling networks in endothelial cells. Journal of Biological Chemistry, 2022, 298, 101801.	3.4	8
2	Investigating Atypical Inflammatory Signaling in Vascular Pericytes as Potential Target for Controlling Bloodâ€Retinalâ€Barrier (BRB) Inflammation in Diabetic Retinopathy. FASEB Journal, 2022, 36, .	0.5	0
3	Atypical p38 Signaling, Activation, and Implications for Disease. International Journal of Molecular Sciences, 2021, 22, 4183.	4.1	34
4	Generating An Exosome Packaged p38 Inhibitory Peptide To Block GPCR Induced Vascular Inflammation. FASEB Journal, 2021, 35, .	0.5	0
5	The Spatiotemporal Bias in Proinflammatory p38 Signaling Revealed by a Forster's Resonance Energy Transfer (FRET)â€based Platform for Mapping GPCRâ€induced Vascular Inflammation. FASEB Journal, 2021, 35, .	0.5	O
6	Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption. Science Signaling, 2021, 14, eabc1044.	3.6	23
7	ATF6 is essential for human cone photoreceptor development. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	31
8	The Structure and Immune Regulatory Implications of the Ubiquitin-Like Tandem Domain Within an Avian 2'-5' Oligoadenylate Synthetase-Like Protein. Frontiers in Immunology, 2021, 12, 794664.	4.8	1
9	aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2–mediated SphK1-S1PR1-Akt signaling axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
10	Phosphoproteomic analysis of protease-activated receptor-1 biased signaling reveals unique modulators of endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5039-5048.	7.1	25
11	Integration of GPCRâ€induced endothelial cytoprotection signaling by βâ€arrestinâ€2. FASEB Journal, 2020, 34, 1-1.	0.5	О
12	Characterization of p38 Inflammatory Response in Human Pericytes. FASEB Journal, 2020, 34, 1-1.	0.5	O
13	Phosphoâ€proteomic Analysis of Proteaseâ€activated Receptorâ€1 Biased Signaling Reveals Novel Modulators of Endothelial Barrier Function. FASEB Journal, 2020, 34, 1-1.	0.5	O
14	Development of FRET Biosensors to Detect Kinase Activity in Living Cells. FASEB Journal, 2020, 34, 1-1.	0.5	0
15	Optimization of Inhibitory Peptide Delivery to Block GPCR Induced Inflammation. FASEB Journal, 2020, 34, 1-1.	0.5	O
16	Ubiquitination as a Key Regulator of Endosomal Signaling by GPCRs. Frontiers in Cell and Developmental Biology, 2019, 7, 43.	3.7	18
17	G protein–coupled receptors activate p38 MAPK via a non-canonical TAB1–TAB2– and TAB1–TAB3–dependent pathway in endothelial cells. Journal of Biological Chemistry, 2019, 294, 5867-5878.	3.4	33
18	Monitoring GPCR Induced Atypical MAPK p38 Signaling to Identify Key Regulators of Vascular Inflammation. FASEB Journal, 2019, 33, 513.13.	0.5	0

#	Article	IF	Citations
19	The unfolded protein response regulator ATF6 promotes mesodermal differentiation. Science Signaling, 2018, 11, .	3.6	54
20	A Tyrosine Switch on NEDD4-2 E3 Ligase Transmits GPCR Inflammatory Signaling. Cell Reports, 2018, 24, 3312-3323.e5.	6.4	36
21	Endothelial GPCRs Activate p38 MAPK Inflammatory Signaling Via Nonâ€canonical TAB1, 2 and 3â€dependent Pathways. FASEB Journal, 2018, 32, 555.12.	0.5	0
22	PAR1 and p38 MAPK Regulation of Endothelial Proâ€Inflammatory Responses. FASEB Journal, 2018, 32, 837.1.	0.5	0
23	Activated Protein Câ€mediated Crosstalk Between PAR1 and S1PR1 in Endothelial Barrier Stabilization. FASEB Journal, 2018, 32, 685.1.	0.5	0
24	Endosomal GPCR signaling: Tyrosine Phosphorylation of a Peptide Linker in NEDD4â€⊋ Increases Ligase Activity to Promote p38 Proinflammatory Signaling. FASEB Journal, 2018, 32, 687.10.	0.5	0
25	The Unfolded Protein Response Regulator, ATF6, Promotes Mesodermal Differentiation. FASEB Journal, 2018, 32, 542.23.	0.5	0
26	ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif. PLoS ONE, 2016, 11, e0157587.	2.5	39
27	Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Current Opinion in Hematology, 2016, 23, 274-279.	2.5	27
28	Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. Journal of Biological Chemistry, 2016, 291, 2223-2236.	3.4	26
29	Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes. Journal of Cell Biology, 2015, 210, 1117-1131.	5.2	63
30	The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein–coupled receptor lysosomal sorting. Molecular Biology of the Cell, 2015, 26, 4660-4673.	2.1	67
31	A General Method for Site Specific Fluorescent Labeling of Recombinant Chemokines. PLoS ONE, 2014, 9, e81454.	2.5	21
32	Endosomal Signaling by Protease-Activated Receptors. Methods in Enzymology, 2014, 535, 389-401.	1.0	19
33	Palmitoylation is required for activated PAR1 ubiquitination and p38 MAPK signaling (1066.16). FASEB Journal, 2014, 28, 1066.16.	0.5	0
34	Ubiquitination of PAR1 nucleates a nonâ€canonical p38 signaling pathway to regulate thrombinâ€induced vascular leakage (1066.15). FASEB Journal, 2014, 28, 1066.15.	0.5	0
35	Rab11A and Rab11B distinctly regulate proteaseâ€activated receptorâ€1 recycling and constitutive degradation (802.10). FASEB Journal, 2014, 28, 802.10.	0.5	0
36	Distinct Roles of the Phosphatidate Phosphatases Lipin 1 and 2 during Adipogenesis and Lipid Droplet Biogenesis in 3T3-L1 Cells. Journal of Biological Chemistry, 2013, 288, 34502-34513.	3.4	41

#	Article	IF	CITATIONS
37	Adaptor Protein Complexâ€2 and epsinâ€1 mediate Proteaseâ€activated Receptorâ€1 internalization via phosphorylation―and ubiquitinationâ€dependent sorting signals. FASEB Journal, 2012, 26, 664.1.	0.5	O
38	Regulation of proteaseâ€activated receptor signaling by postâ€translational modifications. IUBMB Life, 2011, 63, 403-411.	3.4	14
39	Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals. Journal of Biological Chemistry, 2011, 286, 40760-40770.	3.4	66
40	Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. Journal of Clinical Investigation, 2011, 121, 3554-3563.	8.2	272
41	Evaluating the Role of <i>LPIN1</i> Variation in Insulin Resistance, Body Weight, and Human Lipodystrophy in U.K. Populations. Diabetes, 2008, 57, 2527-2533.	0.6	46
42	The Human Lipodystrophy Gene <i>BSCL2/Seipin</i> May Be Essential for Normal Adipocyte Differentiation. Diabetes, 2008, 57, 2055-2060.	0.6	181
43	Temporal and Spatial Regulation of the Phosphatidate Phosphatases Lipin 1 and 2. Journal of Biological Chemistry, 2008, 283, 29166-29174.	3.4	99
44	Two Human ARFGAPs Associated with COPâ€lâ€Coated Vesicles. Traffic, 2007, 8, 1644-1655.	2.7	54
45	Control of Phospholipid Synthesis by Phosphorylation of the Yeast Lipin Pah1p/Smp2p Mg2+-dependent Phosphatidate Phosphatase. Journal of Biological Chemistry, 2006, 281, 34537-34548.	3.4	188
46	The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO Journal, 2005, 24, 1931-1941.	7.8	352
47	Proteostasis Modulation Prevents Photoreceptor Pathology in Retinal Organoids. SSRN Electronic Journal, 0, , .	0.4	1