List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2624569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical simulation of fuel layered distribution iron ore sintering technology. Ironmaking and Steelmaking, 2022, 49, 83-100.	2.1	6
2	Powder deposition mechanism during powder spreading with different spreader geometries in powder bed fusion additive manufacturing. Powder Technology, 2022, 395, 802-810.	4.2	16
3	Particle scale modelling of melt pool dynamics and pore formation in selective laser melting additive manufacturing. Powder Technology, 2022, 397, 117012.	4.2	22
4	Numerical studies of mixing of ellipsoidal particles in a bladed mixer. Powder Technology, 2022, 398, 117065.	4.2	9
5	Influence of baffles on mixing and heat transfer characteristics in an internally heated rotating drum. Powder Technology, 2022, 398, 117129.	4.2	4
6	Discrete particle simulation for mixing of granular materials in ribbon mixers: A scale-up study. Powder Technology, 2022, 400, 117222.	4.2	8
7	Computer simulation of the packing of nanoparticles. Powder Technology, 2022, 401, 117317.	4.2	4
8	Modelling of keyhole dynamics and melt pool flow in laser powder bed fusion process. Powder Technology, 2022, 400, 117262.	4.2	16
9	Scaling up studies for mixing of granular materials in rotating drums. Powder Technology, 2022, 403, 117408.	4.2	7
10	Melt pool dynamics and pores formation in multi-track studies in laser powder bed fusion process. Powder Technology, 2022, 405, 117533.	4.2	9
11	Numerical studies of melt pool and gas bubble dynamics in laser powder bed fusion process. Additive Manufacturing, 2022, 56, 102913.	3.0	9
12	DEM study of particle segregation in the throat region of a blast furnace. Powder Technology, 2022, 407, 117660.	4.2	6
13	A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process. Powder Technology, 2021, 381, 298-312.	4.2	32
14	Size segregation of granular materials during Paul-Wurth hopper charging and discharging process. Powder Technology, 2021, 378, 497-509.	4.2	5
15	Effect of particle shape on bubble dynamics in bubbling fluidized bed. EPJ Web of Conferences, 2021, 249, 06012.	0.3	3
16	Vibration induced segregation of single large particles. EPJ Web of Conferences, 2021, 249, 14006.	0.3	0
17	Investigation of laser-powder interaction in laser powder bed fusion process in additive manufacturing. EPJ Web of Conferences, 2021, 249, 12002.	0.3	0
18	Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. Journal of Materials Research and Technology, 2021, 11, 2059-2073.	5.8	35

#	Article	IF	CITATIONS
19	Particle shape-induced axial segregation of binary mixtures of spheres and ellipsoids in a rotating drum. Chemical Engineering Science, 2021, 235, 116491.	3.8	14
20	Effects of spreader geometry on powder spreading process in powder bed additive manufacturing. Powder Technology, 2021, 384, 211-222.	4.2	57
21	DEM study of particle motion in novel high-speed seed metering device. Advanced Powder Technology, 2021, 32, 1438-1449.	4.1	35
22	Dynamic analysis of poured packing process of ellipsoidal particles. Powder Technology, 2021, 385, 444-454.	4.2	3
23	An improved potential flow model for funnel flow prediction in a central discharging packed bed. Granular Matter, 2021, 23, 1.	2.2	0
24	Radial segregation of a gaussian-dispersed mixture of superquadric particles in a horizontal rotating drum. Powder Technology, 2021, 394, 813-824.	4.2	14
25	Preface for the virtual special issue: Computational particle technology. Powder Technology, 2021, 397, 116151-116151.	4.2	0
26	Experimental and numerical studies of the gas-molten reduction behavior of blast furnace dust particles during in-flight process. Powder Technology, 2020, 361, 226-237.	4.2	9
27	Orientation of spheroidal particles in single jet bubbling fluidized beds. Powder Technology, 2020, 361, 363-373.	4.2	14
28	Segregation of granular binary mixtures with large particle size ratios during hopper discharging process. Powder Technology, 2020, 361, 435-445.	4.2	23
29	CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds. Powder Technology, 2020, 361, 315-325.	4.2	18
30	Experimental and numerical investigation on the packing of binary mixtures of spheres and ellipsoids. Powder Technology, 2020, 360, 1210-1219.	4.2	11
31	Adhesion effects on spreading of metal powders in selective laser melting. Powder Technology, 2020, 363, 602-610.	4.2	65
32	Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles. Chemical Engineering Science, 2020, 212, 115343.	3.8	19
33	Particle velocity distribution function around a single bubble in gas-solid fluidized beds. Powder Technology, 2020, 361, 33-44.	4.2	10
34	An experimental study of packing of ellipsoids under vibrations. Powder Technology, 2020, 361, 45-51.	4.2	10
35	Wall stress analysis in an unsteady hopper flow with ellipsoidal particles. Powder Technology, 2020, 361, 1-9.	4.2	9
36	A Discrete Element Method Study of Monodisperse Mixing of Ellipsoidal Particles in a Rotating Drum. Industrial & Engineering Chemistry Research, 2020, 59, 12458-12470.	3.7	24

ZONGYAN ZHOU

#	Article	IF	CITATIONS
37	Influence of particle shape on mixing rate in rotating drums based on super-quadric DEM simulations. Advanced Powder Technology, 2020, 31, 3540-3550.	4.1	52
38	Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres. Powder Technology, 2020, 366, 709-721.	4.2	13
39	Statistical analysis of monodispersed coarse particle motion in a gas-fluidized bed. Powder Technology, 2020, 363, 107-111.	4.2	4
40	Deformation of 3D printed agglomerates: Multiscale experimental tests and DEM simulation. Chemical Engineering Science, 2020, 217, 115526.	3.8	28
41	Numerical simulation of particle motion characteristics in quantitative seed feeding system. Powder Technology, 2020, 367, 643-658.	4.2	37
42	Particle shape-induced radial segregation of binary mixtures in a rotating drum. Powder Technology, 2019, 341, 157-166.	4.2	48
43	Bubble dynamics in bubbling fluidized beds of ellipsoidal particles. AICHE Journal, 2019, 65, e16736.	3.6	25
44	Micromechanical analysis of bubbles formed in fluidized beds operated with a continuous single jet. Powder Technology, 2019, 357, 398-407.	4.2	7
45	Radial segregation of binary-sized ellipsoids in a rotating drum. Powder Technology, 2019, 357, 322-330.	4.2	14
46	DEM analysis of compression breakage of 3D printed agglomerates with different structures. Powder Technology, 2019, 356, 1045-1058.	4.2	19
47	CFD-DEM modelling of mixing and segregation of binary mixtures of ellipsoidal particles in liquid fluidizations. Journal of Hydrodynamics, 2019, 31, 1190-1203.	3.2	12
48	Evaluation of reduction behavior of blast furnace dust particles during in-flight process with experiment aided mathematical modeling. Applied Mathematical Modelling, 2019, 75, 535-552.	4.2	8
49	How to generate valid local quantities of particle–fluid flows for establishing constitutive relations. AICHE Journal, 2019, 65, e16690.	3.6	21
50	Flow regimes of cohesionless ellipsoidal particles in a rotating drum. Powder Technology, 2019, 354, 174-187.	4.2	26
51	Particle shape effect on bubble dynamics in central air jet pseudo-2D fluidized beds: A CFD-DEM study. Chemical Engineering Science, 2019, 201, 448-466.	3.8	44
52	The demagnetization factor for randomly packed spheroidal particles. Journal of Magnetism and Magnetic Materials, 2019, 476, 417-422.	2.3	13
53	DEM simulation of the local ordering of tetrahedral granular matter. Soft Matter, 2019, 15, 2260-2268.	2.7	19
54	Flow and force analysis on the formation of expanded beds in gas fluidization of fine ellipsoids. Powder Technology, 2019, 357, 291-304.	4.2	3

ZONGYAN ZHOU

#	Article	IF	CITATIONS
55	Particle scale modelling of mixing of ellipsoids and spheres in gas-fluidized beds by a modified drag correlation. Powder Technology, 2019, 343, 619-628.	4.2	22
56	Investigation of causes of layer inversion and prediction of inversion velocity in liquid fluidizations of binary particle mixtures. Powder Technology, 2019, 342, 418-432.	4.2	9
57	Flow and wall stress analysis of granular materials around blocks attached to a wall. Powder Technology, 2018, 330, 431-444.	4.2	9
58	Equivalent packing size of spheroidal particles: A microscopic test. Powder Technology, 2018, 333, 286-292.	4.2	13
59	Model A vs. Model B in the modelling of particle-fluid flow. Powder Technology, 2018, 329, 47-54.	4.2	24
60	Process optimization of metallurgical dust recycling by direct reduction in rotary hearth furnace. Powder Technology, 2018, 326, 101-113.	4.2	32
61	Size-induced segregation of granular materials during filling a conical hopper. Powder Technology, 2018, 340, 331-343.	4.2	22
62	Experimental study of the deformation and breakage of 3D printed agglomerates: Effects of packing density and inter-particle bond strength. Powder Technology, 2018, 340, 299-310.	4.2	18
63	Structure analysis on the packing of ellipsoids under one-dimensional vibration and periodic boundary conditions. Powder Technology, 2018, 335, 327-333.	4.2	9
64	Particle scale modelling of solid flow characteristics in liquid fluidizations of ellipsoidal particles. Powder Technology, 2018, 338, 677-691.	4.2	7
65	Particle scale modelling of bubble properties in central air jet gas-solid fluidized beds. Powder Technology, 2018, 339, 70-80.	4.2	20
66	Discrete particle simulation of solid flow in a melter-gasifier in smelting reduction process. Powder Technology, 2017, 314, 641-648.	4.2	19
67	Micromechanical analysis of flow behaviour of fine ellipsoids in gas fluidization. Chemical Engineering Science, 2017, 163, 11-26.	3.8	24
68	Effect of particle shape and size on effective thermal conductivity of packed beds. Powder Technology, 2017, 311, 157-166.	4.2	64
69	CFD-DEM simulation of raceway formation in an ironmaking blast furnace. Powder Technology, 2017, 314, 542-549.	4.2	80
70	Interparticle force analysis on the packing of fine ellipsoids. Powder Technology, 2017, 320, 610-624.	4.2	28
71	Transverse mixing of ellipsoidal particles in a rotating drum. EPJ Web of Conferences, 2017, 140, 06018.	0.3	8
72	Stress distribution in conical sandpiles formed with ellipsoidal particles. EPJ Web of Conferences, 2017, 140, 06023.	0.3	1

#	Article	IF	CITATIONS
73	A CFD-DEM study of single bubble formation in gas fluidization of spherical and non-spherical particles. EPJ Web of Conferences, 2017, 140, 15026.	0.3	5
74	DEM Simulation of Particle Stratification and Segregation in Stockpile Formation. EPJ Web of Conferences, 2017, 140, 15018.	0.3	8
75	DEM study of granular flow around blocks attached to inclined walls. EPJ Web of Conferences, 2017, 140, 03075.	0.3	0
76	CFD–DEM modeling of gas fluidization of fine ellipsoidal particles. AICHE Journal, 2016, 62, 62-77.	3.6	67
77	A GPU-based DEM approach for modelling of particulate systems. Powder Technology, 2016, 301, 1172-1182.	4.2	111
78	DEM simulation on the packing of fine ellipsoids. Chemical Engineering Science, 2016, 156, 64-76.	3.8	72
79	Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles. Chemical Engineering Science, 2016, 144, 201-215.	3.8	79
80	Gas–solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings. Powder Technology, 2016, 296, 59-71.	4.2	58
81	Particle Scale Study of Heat Transfer in Packed and Fluidized Beds. Advances in Chemical Engineering, 2015, 46, 193-243.	0.9	4
82	Numerical Investigation of Burden Distribution in a Blast Furnace. Steel Research International, 2015, 86, 651-661.	1.8	44
83	Particle scale studies of heat transfer in a moving bed. Powder Technology, 2015, 281, 99-111.	4.2	53
84	A New Approach for Studying Softening and Melting Behavior of Particles in a Blast Furnace Cohesive Zone. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 977-992.	2.1	26
85	Discrete particle simulation of solid flow in a three-dimensional blast furnace sector model. Chemical Engineering Journal, 2015, 278, 339-352.	12.7	57
86	Lattice–Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technology, 2015, 285, 146-156.	4.2	81
87	Particle scale simulation of softening–melting behaviour of multiple layers of particles in a blast furnace cohesive zone. Powder Technology, 2015, 279, 134-145.	4.2	31
88	Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles. Granular Matter, 2014, 16, 695-709.	2.2	66
89	Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technology, 2014, 253, 70-79.	4.2	144
90	Periodic Boundary Conditions for Discrete Element Method Simulation of Particle Flow in Cylindrical Vessels. Industrial & Engineering Chemistry Research, 2014, 53, 8245-8256.	3.7	44

#	Article	IF	CITATIONS
91	Contact forces between viscoelastic ellipsoidal particles. Powder Technology, 2013, 248, 25-33.	4.2	75
92	Discrete modelling of the packing of ellipsoidal particles. , 2013, , .		4
93	Computational study of heat transfer in gas fluidization. , 2013, , .		0
94	Microscopic analysis of Hopper flow with ellipsoidal particles. , 2013, , .		0
95	Segregation of binary mixtures of spheres and ellipsoids. AIP Conference Proceedings, 2013, , .	0.4	8
96	Discrete element modeling of gas fluidization of fine ellipsoidal particles. AIP Conference Proceedings, 2013, , .	0.4	1
97	Contact analysis of different flow regimes in gas fluidization. , 2013, , .		1
98	Impaction of particle streams on a granular bed. , 2013, , .		1
99	Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chemical Engineering Science, 2012, 84, 449-468.	3.8	106
100	Computational Study of the Effects of Material Properties on Heat Transfer in Gas Fluidization. Industrial & Engineering Chemistry Research, 2012, 51, 11572-11586.	3.7	53
101	Computational study of heat transfer in a bubbling fluidized bed with a horizontal tube. AICHE Journal, 2012, 58, 1422-1434.	3.6	113
102	Dynamic Simulation of the Packing of Ellipsoidal Particles. Industrial & Engineering Chemistry Research, 2011, 50, 9787-9798.	3.7	178
103	Linking discrete particle simulation to continuum process modelling for granular matter: Theory and application. Particuology, 2011, 9, 342-357.	3.6	29
104	Discrete particle simulation of gas fluidization of ellipsoidal particles. Chemical Engineering Science, 2011, 66, 6128-6145.	3.8	198
105	Numerical simulation of the liquid-induced erosion in a weakly bonded sand assembly. Powder Technology, 2011, 211, 237-249.	4.2	32
106	Gas–solid flow in an ironmaking blast furnace-II: Discrete particle simulation. Powder Technology, 2011, 208, 72-85.	4.2	78
107	Gas–solid flow in an ironmaking blast furnace — I: Physical modelling. Powder Technology, 2011, 208, 86-97.	4.2	55
108	Numerical Investigation of the Transient Multiphase Flow in an Ironmaking Blast Furnace. ISIJ International, 2010, 50, 515-523.	1.4	56

ZONGYAN ZHOU

#	Article	IF	CITATIONS
109	A new computational method for studying heat transfer in fluid bed reactors. Powder Technology, 2010, 197, 102-110.	4.2	120
110	Discrete particle simulation of particle–fluid flow: model formulations and their applicability. Journal of Fluid Mechanics, 2010, 661, 482-510.	3.4	605
111	The role of geometric constraints in random packing of non-spherical particles. Europhysics Letters, 2010, 92, 68005.	2.0	16
112	Investigation of Heat Transfer in Bubbling Fluidization with an Immersed Tube. , 2010, , .		2
113	Simulation of the Flow and Segregation of Particle Mixtures in Liquid Fluidization. , 2009, , .		15
114	Particle scale study of heat transfer in packed and bubbling fluidized beds. AICHE Journal, 2009, 55, 868-884.	3.6	261
115	Stress fields of solid flow in a model blast furnace. Granular Matter, 2009, 11, 269-280.	2.2	15
116	Averaging method of particulate systems and its application to particle-fluid flow in a fluidized bed. Science Bulletin, 2009, 54, 4309-4317.	9.0	10
117	Effect of Contact Resistance on Bulk Resistivity of Dry Coke Beds. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 388-396.	2.1	13
118	Discrete particle simulation of gas–solid flow in a blast furnace. Computers and Chemical Engineering, 2008, 32, 1760-1772.	3.8	85
119	Discrete particle simulation of particulate systems: A review of major applications and findings. Chemical Engineering Science, 2008, 63, 5728-5770.	3.8	1,172
120	Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science, 2007, 62, 3378-3396.	3.8	1,516
121	Discrete Particle Simulation of Solid Flow in a Model Blast Furnace. ISIJ International, 2005, 45, 1828-1837.	1.4	93
122	Numerical simulation of the interaction forces between turbine meter and particles in a standpipe. Granular Matter, 2004, 5, 193-199.	2.2	3
123	A simplified mathematical model for gas?solid flow in a blast furnace. Progress in Computational Fluid Dynamics, 2004, 4, 39.	0.2	18