Rai S Kookana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environment International, 2002, 28, 215-226.	4.8	946
2	A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 2018, 13, 677-684.	15.6	685
3	Occurrence and fate of hormone steroids in the environment. Environment International, 2002, 28, 545-551.	4.8	589
4	lonic-strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 1994, 45, 419-429.	1.8	474
5	Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 2013, 116, 653-659.	1.1	467
6	Biochar Application to Soil. Advances in Agronomy, 2011, , 103-143.	2.4	450
7	Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 2009, 76, 665-671.	4.2	332
8	Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environmental Pollution, 2007, 150, 300-305.	3.7	312
9	Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. Journal of Agricultural and Food Chemistry, 2014, 62, 4227-4240.	2.4	308
10	Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environment International, 2007, 33, 199-205.	4.8	288
11	Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research, 2003, 37, 3785-3791.	5.3	284
12	Fate and Uptake of Pharmaceuticals in Soil–Plant Systems. Journal of Agricultural and Food Chemistry, 2014, 62, 816-825.	2.4	263
13	Cadmium Sorption and Transport in Variable Charge Soils: A Review. Journal of Environmental Quality, 1997, 26, 602-617.	1.0	253
14	The Nature of Soil Organic Matter Affects Sorption of Pesticides. 1. Relationships with Carbon Chemistry as Determined by13C CPMAS NMR Spectroscopy. Environmental Science & Technology, 2001 35 878-884	4.6	244
15	The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Research, 2010, 48, 627.	0.6	237
16	Sorption and Desorption Behaviors of Diuron in Soils Amended with Charcoal. Journal of Agricultural and Food Chemistry, 2006, 54, 8545-8550.	2.4	221
17	A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Science of the Total Environment, 2018,	3.9	207
18	Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environmental Pollution, 2012, 165, 225-232.	3.7	204

#	Article	IF	CITATIONS
19	Degradation of Five Selected Endocrine-Disrupting Chemicals in Seawater and Marine Sediment. Environmental Science & Technology, 2003, 37, 1256-1260.	4.6	202
20	Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 2012, 231-232, 70-78.	6.5	200
21	SORPTION AND DEGRADATION OF ESTROGEN-LIKE-ENDOCRINE DISRUPTING CHEMICALS IN SOIL. Environmental Toxicology and Chemistry, 2005, 24, 2640.	2.2	191
22	Effect of Wastewater Treatment Plant Effluent on Microbial Function and Community Structure in the Sediment of a Freshwater Stream with Variable Seasonal Flow. Applied and Environmental Microbiology, 2008, 74, 2659-2668.	1.4	190
23	Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 2019, 252, 522-531.	3.7	175
24	Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology, 2020, 54, 15883-15892.	4.6	171
25	Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Soil Research, 1998, 36, 715.	0.6	150
26	Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Research, 2011, 45, 5005-5014.	5.3	141
27	Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies. Journal of Environmental Monitoring, 2009, 11, 1498.	2.1	137
28	Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 5328-5335.	1.8	131
29	Determination of the insecticide imidacloprid in water and soil using high-performance liquid chromatography. Journal of Chromatography A, 1997, 787, 271-275.	1.8	129
30	Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Journal of Environmental Sciences, 2010, 22, 615-620.	3.2	129
31	Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Science of the Total Environment, 2019, 647, 1256-1265.	3.9	124
32	Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Science of the Total Environment, 2009, 407, 5147-5155.	3.9	123
33	Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130586.	1.8	123
34	Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere, 2007, 67, 1033-1042.	4.2	114
35	Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environmental Toxicology and Chemistry, 2008, 27, 87-94.	2.2	112
36	Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. Journal of Agricultural and Food Chemistry, 2018, 66, 6480-6486.	2.4	106

Rai S Kookana

#	Article	IF	CITATIONS
37	Chemistry of Chromium in Soils with Emphasis on Tannery Waste Sites. Reviews of Environmental Contamination and Toxicology, 2003, 178, 53-91.	0.7	98
38	Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere, 2011, 84, 1572-1577.	4.2	98
39	Impact of Herbicides on Soil Biology and Function. Advances in Agronomy, 2016, , 133-220.	2.4	98
40	TIME-DEPENDENT SORPTION OF PESTICIDES DURING TRANSPORT IN SOILS. Soil Science, 1992, 154, 214-225.	0.9	94
41	Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases. Environmental Science & Technology, 2015, 49, 12509-12518.	4.6	92
42	Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere, 2004, 57, 1325-1333.	4.2	91
43	Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes. Chemosphere, 2019, 222, 671-678.	4.2	91
44	Persistence and effects of fenamiphos on native algal populations and enzymatic activities in soil. Soil Biology and Biochemistry, 1999, 31, 1549-1553.	4.2	89
45	Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. Journal of Agricultural and Food Chemistry, 2016, 64, 3917-3924.	2.4	88
46	Removal of carbamazepine in aqueous solutions through solar photolysis of free available chlorine. Water Research, 2016, 100, 413-420.	5.3	86
47	Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost. Chemosphere, 2016, 142, 14-23.	4.2	86
48	Sources, presence and potential effects of contaminants of emerging concern in the marine environments of the Great Barrier Reef and Torres Strait, Australia. Science of the Total Environment, 2020, 719, 135140.	3.9	86
49	Urbanisation and emerging economies: Issues and potential solutions for water and food security. Science of the Total Environment, 2020, 732, 139057.	3.9	82
50	Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere, 2004, 56, 257-263.	4.2	80
51	Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. Water Research, 2008, 42, 1133-1141.	5.3	80
52	Bioavailability of an Organophosphorus Pesticide, Fenamiphos, Sorbed on an Organo Clay. Journal of Agricultural and Food Chemistry, 2003, 51, 2653-2658.	2.4	77
53	Fate and behaviour of triasulfuron, metsulfuron-methyl, and chlorsulfuron in the Australian soil environment: a review. Australian Journal of Agricultural Research, 1998, 49, 775.	1.5	77
54	Simulation of simazine transport through soil columns using time-dependent sorption data measured under flow conditions. Journal of Contaminant Hydrology, 1993, 14, 93-115.	1.6	76

#	Article	IF	CITATIONS
55	Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products identification, and toxicity evaluation. Journal of Hazardous Materials, 2016, 320, 296-303.	6.5	75
56	Effect of triclosan on microbial activity in australian soils. Environmental Toxicology and Chemistry, 2009, 28, 65-70.	2.2	72
57	Transport and retention of bacteria and viruses in biochar-amended sand. Science of the Total Environment, 2016, 548-549, 100-109.	3.9	72
58	Influence of mineral characteristics on the retention of low molecular weight organic compounds: A batch sorption–desorption and ATR-FTIR study. Journal of Colloid and Interface Science, 2014, 432, 246-257.	5.0	70
59	Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere, 2008, 70, 1153-1160.	4.2	68
60	The effect of terrain and management on the spatial variability of soil properties in an apple orchard. Catena, 2012, 93, 38-48.	2.2	68
61	Laboratory and field studies on the degradation of fipronil in a soil. Soil Research, 2002, 40, 1095.	0.6	67
62	Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Soil Research, 2003, 41, 749.	0.6	67
63	Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions. Journal of Contaminant Hydrology, 2013, 151, 131-139.	1.6	66
64	Effect of soil solution composition on cadmium transport through variable charge soils. Geoderma, 1998, 84, 235-248.	2.3	64
65	Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography–mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2010, 45, 152-161.	0.7	64
66	Triclosan: its occurrence, fate and effects in the Australian environment. Water Science and Technology, 2011, 63, 598-604.	1.2	63
67	Desorption of cadmium from goethite: Effects of pH, temperature and aging. Chemosphere, 2006, 64, 856-865.	4.2	62
68	The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia. Ecotoxicology and Environmental Safety, 2018, 148, 770-780.	2.9	60
69	DEGRADATION RATES OF EIGHT PESTICIDES IN SURFACE AND SUBSURFACE SOILS UNDER LABORATORY AND FIELD CONDITIONS. Soil Science, 1998, 163, 404-411.	0.9	60
70	Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Science of the Total Environment, 2022, 817, 152975.	3.9	60
71	Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions. Pest Management Science, 2000, 56, 463-471.	1.7	58
72	Biodegradation of the ultraviolet filter benzophenone $\hat{\epsilon}$ under different redox conditions. Environmental Toxicology and Chemistry, 2012, 31, 289-295.	2.2	58

#	Article	IF	CITATIONS
73	The Role of Transdisciplinary Approach and Community Participation in Village Scale Groundwater Management: Insights from Gujarat and Rajasthan, India. Water (Switzerland), 2014, 6, 3386-3408.	1.2	58
74	Pesticide Impact Rating Index – A Pesticide Risk Indicator for Water Quality. Water, Air and Soil Pollution, 2005, 5, 45-65.	0.8	57
75	A field-study of leaching and degradation of nine pesticides in a sandy soil. Soil Research, 1995, 33, 1019.	0.6	55
76	Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water. Environmental Chemistry, 2011, 8, 581.	0.7	53
77	Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Marine Pollution Bulletin, 2018, 129, 299-307.	2.3	53
78	Field dissipation of 4-nonylphenol, 4-t-octylphenol, triclosan and bisphenol A following land application of biosolids. Chemosphere, 2012, 86, 1050-1058.	4.2	49
79	Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Research, 2014, 52, 739.	0.6	49
80	Separating the effects of organic matter–mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere, 2008, 72, 886-890.	4.2	48
81	Comprehensive framework for human health risk assessment of nanopesticides. Nature Nanotechnology, 2021, 16, 955-964.	15.6	48
82	Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water. Applied Microbiology and Biotechnology, 2003, 61, 252-256.	1.7	47
83	Sorption of Pesticides in Tropical and Temperate Soils from Australia and the Philippines. Journal of Agricultural and Food Chemistry, 2005, 53, 6420-6425.	2.4	47
84	Sorption, plant uptake and metabolism of benzodiazepines. Science of the Total Environment, 2018, 628-629, 18-25.	3.9	47
85	The effects of organic matter–mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. Chemosphere, 2015, 119, 99-104.	4.2	46
86	The role of surface charge and pH changes in tropical soils on sorption behaviour of per- and polyfluoroalkyl substances (PFASs). Science of the Total Environment, 2019, 673, 197-206.	3.9	46
87	Sorption non-equilibrium during cadmium transport through soils. Soil Research, 1994, 32, 635.	0.6	45
88	SORPTION OF FIPRONIL AND ITS METABOLITES ON SOILS FROM SOUTH AUSTRALIA. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 545-558.	0.7	45
89	The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption. European Journal of Soil Science, 2006, 57, 883-893.	1.8	44
90	Selected personal care products and endocrine disruptors in biosolids: An Australia-wide survey. Science of the Total Environment, 2011, 409, 1075-1081.	3.9	43

#	Article	IF	CITATIONS
91	AGING REDUCES THE BIOAVAILABILITY OF EVEN A WEAKLY SORBED PESTICIDE (CARBARYL) IN SOIL. Environmental Toxicology and Chemistry, 2004, 23, 2084.	2.2	42
92	NMR Characterization of 13C-Benzene Sorbed to Natural and Prepared Charcoals. Environmental Science & Scie	4.6	41
93	Sorption and plant uptake of pharmaceuticals from an artificially contaminated soil amended with biochars. Plant and Soil, 2015, 395, 75-86.	1.8	41
94	Degradation of 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil under laboratory conditions. Chemosphere, 2011, 84, 1556-1562.	4.2	40
95	Faster degradation of herbicidally-active enantiomer of imidazolinones in soils. Chemosphere, 2010, 79, 1040-1045.	4.2	39
96	The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet, South Australia. Journal of Environmental Monitoring, 2011, 13, 801.	2.1	39
97	Sorption of Carbofuran and Diuron Pesticides in 43 Tropical Soils of Sri Lanka. Journal of Agricultural and Food Chemistry, 2006, 54, 1784-1791.	2.4	38
98	Estimating the sorption of pharmaceuticals based on their pharmacological distribution. Environmental Toxicology and Chemistry, 2009, 28, 2572-2579.	2.2	38
99	Sequestration and potential release of PFAS from spent engineered sorbents. Science of the Total Environment, 2021, 765, 142770.	3.9	38
100	Response and recovery of acetylcholinesterase activity in freshwater shrimp, Paratya australiensis (Decapoda: Atyidae) exposed to selected anti-cholinesterase insecticides. Ecotoxicology and Environmental Safety, 2010, 73, 1503-1510.	2.9	37
101	Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environmental Chemistry, 2019, 16, 401.	0.7	37
102	Bioconcentration of triclosan and methyl-triclosan in marine mussels (Mytilus galloprovincialis) under laboratory conditions and in metropolitan waters of Gulf St Vincent, South Australia. Marine Pollution Bulletin, 2013, 74, 66-72.	2.3	36
103	Remobilisation of silver and silver sulphide nanoparticles in soils. Environmental Pollution, 2014, 193, 102-110.	3.7	36
104	Predicting partitioning of radiolabelled 14C-PFOA in a range of soils using diffuse reflectance infrared spectroscopy. Science of the Total Environment, 2019, 686, 505-513.	3.9	35
105	Estimating the pollution potential of pesticides to ground water. Soil Research, 1994, 32, 1141.	0.6	33
106	Release behavior of triazine residues in stabilised contaminated soils. Environmental Pollution, 2005, 134, 71-77.	3.7	33
107	Direct Comparison between Visible Near- and Mid-Infrared Spectroscopy for Describing Diuron Sorption in Soils. Environmental Science & amp; Technology, 2009, 43, 4049-4055.	4.6	33
108	Impact of climatic and soil conditions on environmental fate of atrazine used under plantation forestry in Australia. Journal of Environmental Management, 2010, 91, 2649-2656.	3.8	33

#	Article	IF	CITATIONS
109	Photolysis of benzotriazole and formation of its polymerised photoproducts in aqueous solutions under UV irradiation. Environmental Chemistry, 2011, 8, 174.	0.7	31
110	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils. Environmental Pollution, 2020, 258, 113726.	3.7	31
111	Abiotic degradation (photodegradation and hydrolysis) of imidazolinone herbicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 105-112.	0.7	30
112	Differences in sorption behaviour of carbaryl and phosalone in soils from Australia, Pakistan, and the United Kingdom. Soil Research, 2001, 39, 893.	0.6	29
113	ON-LINE SOLID-PHASE EXTRACTION AND FLUORESCENCE DETECTION OF SELECTED ENDOCRINE DISRUPTING CHEMICALS IN WATER BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2002, 37, 225-234.	0.7	29
114	Determination of sulfonylurea herbicides in soil extracts by solid-phase extraction and capillary zone electrophoresis. Chromatographia, 2000, 52, 142-146.	0.7	28
115	PERSISTENCE AND MOVEMENT OF FIPRONIL TERMITICIDE WITH UNDER-SLAB AND TRENCHING TREATMENTS. Environmental Toxicology and Chemistry, 2006, 25, 2045.	2.2	28
116	Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) as affected by the properties of coastal estuarine sediments. Science of the Total Environment, 2020, 720, 137263.	3.9	28
117	Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pest Management Science, 1999, 55, 1222-1228.	0.6	27
118	Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 240-249.	0.7	27
119	Behaviour of fullerenes (C60) in the terrestrial environment: Potential release from biosolids-amended soils. Journal of Hazardous Materials, 2013, 262, 496-503.	6.5	27
120	Transformation and degradation of fenamiphos nematicide and its metabolites in soils. Soil Research, 1997, 35, 753.	0.6	27
121	Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials attermiticidal application rates. Pest Management Science, 1999, 55, 1222-1228.	0.6	27
122	SORPTION OF AMETRYN AND IMAZETHAPYR IN TWENTY-FIVE SOILS FROM PAKISTAN AND AUSTRALIA. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 143-160.	0.7	26
123	Persistence and leaching of sulfonylurea herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia. Australian Journal of Experimental Agriculture, 2006, 46, 1069.	1.0	26
124	Sorption of a Hydrophilic Pesticide. Soil Science Society of America Journal, 2006, 70, 1991-1997.	1.2	26
125	Midinfrared Spectroscopy and Chemometrics to Predict Diuron Sorption Coefficients in Soils. Environmental Science & Technology, 2008, 42, 3283-3288.	4.6	26
126	Improved extraction and clean-up of imidazolinone herbicides from soil solutions using different solid-phase sorbents. Journal of Chromatography A, 2009, 1216, 5092-5100.	1.8	25

#	Article	IF	CITATIONS
127	Biodegradation of Simazine and Diuron Herbicides under Aerobic and Anoxic Conditions Relevant to Managed Aquifer Recharge of Storm Water. Clean - Soil, Air, Water, 2014, 42, 745-752.	0.7	25
128	A METHOD FOR STUDYING NONEQUILIBRIUM SORPTION DURING TRANSPORT OF PESTICIDES IN SOIL. Soil Science, 1992, 154, 344-349.	0.9	24
129	Leaching and degradation of triasulfuron, metsulfuron-methyl, and chlorsulfuron in alkaline soil profiles under field conditions. Soil Research, 2000, 38, 617.	0.6	24
130	Quantitative determination of fullerene (C60) in soils by high performance liquid chromatography and accelerated solvent extraction technique. Environmental Chemistry, 2010, 7, 292.	0.7	24
131	Banded applications are highly effective in minimising herbicide migration from furrow-irrigated sugar cane. Science of the Total Environment, 2014, 466-467, 841-848.	3.9	24
132	Comparing the Leaching Behavior of Per- and Polyfluoroalkyl Substances from Contaminated Soils Using Static and Column Leaching Tests. Environmental Science & Technology, 2022, 56, 368-378.	4.6	24
133	Effects of electrolyte composition on chromium desorption in soils contaminated by tannery waste. Soil Research, 2001, 39, 1077.	0.6	23
134	Degradation of Six Selected Ultraviolet Filters in Aquifer Materials Under Various Redox Conditions. Ground Water Monitoring and Remediation, 2013, 33, 79-88.	0.6	23
135	Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate. Science of the Total Environment, 2015, 530-531, 434-444.	3.9	23
136	Attenuation of Two Estrogen Compounds in Aquifer Materials Supplemented with Sewage Effluent. Ground Water Monitoring and Remediation, 2004, 24, 102-107.	0.6	22
137	Simultaneous Determination of Imidacloprid, Thiacloprid, and Thiamethoxam in Soil and Water by High-performance Liquid Chromatography with Diode-array Detection. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 737-746.	0.7	22
138	Persistence and leaching of imazethapyr and flumetsulam herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia. Australian Journal of Experimental Agriculture, 2006, 46, 669.	1.0	22
139	Organo-mineral interactions mask the true sorption potential of biochars in soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 214-219.	0.7	22
140	An investigation into the long-term binding and uptake of PFOS, PFOA and PFHxS in soil – plant systems. Journal of Hazardous Materials, 2021, 404, 124065.	6.5	22
141	Mobility and persistence of three sulfonylurea herbicides in alkaline cropping soils of south-eastern Australia. Australian Journal of Experimental Agriculture, 1999, 39, 465.	1.0	21
142	Aqueous chlorination of benzodiazepines diazepam and oxazepam: Kinetics, transformation products and reaction pathways. Chemical Engineering Journal, 2018, 354, 1100-1109.	6.6	21
143	Sorption of pesticides used in banana production on soils of Ecuador. Soil Research, 2002, 40, 1085.	0.6	20
144	Prediction of Atrazine Sorption Coefficients in Soils Using Mid-Infrared Spectroscopy and Partial Least-Squares Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 3208-3213.	2.4	20

#	Article	IF	CITATIONS
145	Localisation of estrogen responsive genes in the liver and testis of Murray rainbowfish Melanotaenia fluviatilis exposed to 17β-estradiol. Molecular and Cellular Endocrinology, 2009, 303, 57-66.	1.6	20
146	Land use effects on sorption of pesticides and their metabolites in sandy soils. I. Fenamiphos and two metabolites, fenamiphos sulfoxide and fenamiphos sulfone, and fenarimol and azinphos methyl. Soil Research, 2003, 41, 847.	0.6	19
147	The effect of lipids on the sorption of diuron and phenanthrene in soils. Chemosphere, 2009, 74, 1062-1068.	4.2	19
148	Off-site transport of pesticides in dissolved and particulate forms from two land uses in the Mt. Lofty Ranges, South Australia. Agricultural Water Management, 2012, 106, 78-85.	2.4	19
149	Environmental issues associated with coal seam gas recovery: managing the fracking boom. Environmental Chemistry, 2012, 9, 425.	0.7	19
150	The use of multiple tracers for tracking wastewater discharges in freshwater systems. Environmental Monitoring and Assessment, 2013, 185, 9321-9332.	1.3	19
151	Fullerol as a Potential Pathway for Mineralization of Fullerene Nanoparticles in Biosolid-Amended Soils. Environmental Science and Technology Letters, 2016, 3, 7-12.	3.9	19
152	Effect of organic cosolvent on adsorption and desorption of linuron and simazine in soil. Soil Research, 1990, 28, 717.	0.6	18
153	The effect of landuse on soil organic carbon chemistry and sorption of pesticides and metabolites. Chemosphere, 2005, 60, 531-541.	4.2	18
154	Groundwater scarcity impact on inclusiveness and women empowerment: Insights from school absenteeism of female students in two watersheds in India. International Journal of Inclusive Education, 2016, 20, 1155-1171.	1.5	18
155	Off-site transport of pesticides from two horticultural land uses in the Mt. Lofty Ranges, South Australia. Agricultural Water Management, 2012, 106, 60-69.	2.4	17
156	The off-site transport of pesticide loads from two land uses in relation to hydrological events in the Mt. Lofty Ranges, South Australia. Agricultural Water Management, 2012, 106, 70-77.	2.4	17
157	Organomineral Interactions and Herbicide Sorption in Brazilian Tropical and Subtropical Oxisols under No-Tillage. Journal of Agricultural and Food Chemistry, 2016, 64, 3925-3934.	2.4	17
158	Chronic effects and thresholds for estuarine and marine benthic organism exposure to perfluorooctane sulfonic acid (PFOS)-contaminated sediments: Influence of organic carbon and exposure routes. Science of the Total Environment, 2021, 776, 146008.	3.9	17
159	Retention and release of diquat and paraquat herbicides in soils. Soil Research, 1993, 31, 97.	0.6	16
160	Can aquatic distribution of human pharmaceuticals be related to pharmacological data?. Chemosphere, 2006, 65, 2253-2259.	4.2	16
161	Bioactivity of POPs and their effects in mosquitofish in Sydney Olympic Park, Australia. Science of the Total Environment, 2009, 407, 3721-3730.	3.9	16
162	Crop damage caused by residual acetolactate synthase herbicides in the soils of south-eastern Australia. Australian Journal of Experimental Agriculture, 2006, 46, 1323.	1.0	16

#	Article	IF	CITATIONS
163	Land use effects on sorption of pesticides and their metabolites in sandy soils. II. Atrazine and two metabolites, deethylatrazine and deisopropylatrazine, and prometryne. Soil Research, 2003, 41, 861.	0.6	15
164	Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere, 2020, 238, 124558.	4.2	15
165	Emerging investigator series: nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environmental Science: Nano, 2020, 7, 1867-1873.	2.2	15
166	Minimising off-site movement of contaminants in furrow irrigation using polyacrylamide (PAM). I. Pesticides. Soil Research, 2006, 44, 551.	0.6	14
167	Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment. Science of the Total Environment, 2010, 408, 3689-3695.	3.9	14
168	Using the power of C-13 NMR to interpret infrared spectra of soil organic matter: A two-dimensional correlation spectroscopy approach. Vibrational Spectroscopy, 2013, 66, 76-82.	1.2	14
169	Minimising off-site movement of contaminants in furrow irrigation using polyacrylamide (PAM). II. Phosphorus, nitrogen, carbon, and sediment. Soil Research, 2006, 44, 561.	0.6	14
170	Simultaneous analysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in water and alkaline soils by high-performance liquid chromatography. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1999, 34, 363-380.	0.7	13
171	Pesticide fate in farming systems: Research and monitoring. Communications in Soil Science and Plant Analysis, 2000, 31, 1641-1659.	0.6	13
172	Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil. Science of the Total Environment, 2013, 447, 56-63.	3.9	13
173	Spatial Distribution of Perfluoroalkyl Substances in Surface Sediments of Five Major Rivers in China. Archives of Environmental Contamination and Toxicology, 2015, 68, 566-576.	2.1	13
174	Effect of triclosan and triclocarban biocides on biodegradation of estrogens in soils. Chemosphere, 2009, 77, 1381-1386.	4.2	12
175	Sorption of nano-C60 clusters in soil: hydrophilic or hydrophobic interactions?. Journal of Environmental Monitoring, 2011, 13, 1190.	2.1	12
176	Persistence of estrogenic activity in soils following land application of biosolids. Environmental Toxicology and Chemistry, 2014, 33, 26-28.	2.2	12
177	Comparative environmental impact assessment of herbicides used on genetically modified and non-genetically modified herbicide-tolerant canola crops using two risk indicators. Science of the Total Environment, 2016, 557-558, 754-763.	3.9	12
178	Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. Environmental Science & Technology, 2022, 56, 10030-10041.	4.6	12
179	Measuring Sorption of Hydrophilic Organic Compounds in Soils by an Unsaturated Transient Flow Method. Journal of Environmental Quality, 2005, 34, 1045-1054.	1.0	11
180	Sorption of pesticides by a mineral sand mining by-product, neutralised used acid (NUA). Science of the Total Environment, 2013, 442, 255-262.	3.9	11

#	Article	IF	CITATIONS
181	On-farm management practices to minimise off-site movement of pesticides from furrow irrigation. Pest Management Science, 2006, 62, 899-911.	1.7	10
182	Distribution of inorganic and organic contaminants in sediments from Sydney Olympic Park and the surrounding Sydney metropolitan area. Journal of Environmental Monitoring, 2009, 11, 1687.	2.1	10
183	Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish <i>(Melanotaenia fluviatilis)</i> . Environmental Toxicology and Chemistry, 2015, 34, 1078-1087.	2.2	10
184	Microbial degradation of strychnine rodenticide in South Australian agricultural soils: laboratory studies. Soil Biology and Biochemistry, 1998, 30, 129-134.	4.2	9
185	Integration of the Pesticide Impact Rating Index with a Geographic Information System for the Assessment of Pesticide Impact on Water Quality. Water, Air and Soil Pollution, 2005, 5, 67-88.	0.8	9
186	Spatial distribution of diuron sorption affinity as affected by soil, terrain and management practices in an intensively managed apple orchard. Journal of Hazardous Materials, 2012, 217-218, 398-405.	6.5	9
187	Removal of chemicals of concern by high rate nitrifying trickling filters. Journal of Chemical Technology and Biotechnology, 2016, 91, 3070-3078.	1.6	9
188	Fate of radiolabeled C60 fullerenes in aged soils. Environmental Pollution, 2017, 221, 293-300.	3.7	9
189	Optimizing the riparian zone width near a river for controlling lateral migration of irrigation water and solutes. Journal of Hydrology, 2019, 570, 637-646.	2.3	9
190	Sorption-Desorption of Fenamiphos in Surfactant-Modified Clays. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 276-282.	1.3	8
191	Contamination and screening level toxicity of sediments from remediated and unremediated wetlands near Sydney, Australia. Environmental Toxicology and Chemistry, 2009, 28, 2052-2060.	2.2	8
192	Fate of indicator endocrine disrupting chemicals in sewage during treatment and polishing for non-potable reuse. Water Science and Technology, 2010, 62, 1416-1423.	1.2	8
193	Nutrient and sediment concentrations in the Pagsanjan–Lumban catchment of Laguna de Bay, Philippines. Agricultural Water Management, 2012, 106, 17-26.	2.4	8
194	Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel. Environmental Pollution, 2017, 220, 946-954.	3.7	8
195	Organic waste from sugar mills as a potential soil ameliorant to minimise herbicide runoff to the Great Barrier Reef. Science of the Total Environment, 2020, 713, 136640.	3.9	8
196	Laboratory batch representation of PFAS leaching from aged field soils: Intercomparison across new and standard approaches. Science of the Total Environment, 2022, 838, 156562.	3.9	8
197	Application of VARLEACH and LEACHM models to experimental data on leaching of a non-reactive tracer and three sulfonylurea herbicides. Soil Research, 2001, 39, 1041.	0.6	7
198	A study of atrazine transport through a soil profile on the Gnangara Mound, Western Australia, using LEACHP and Monte Carlo techniques. Soil Research, 2002, 40, 455.	0.6	7

#	Article	IF	CITATIONS
199	Pesticide Risk Indicators: Their Role in Minimizing Off-Site Impacts of Pesticides on Water Quality. ACS Symposium Series, 2007, , 37-52.	0.5	7
200	Pharmaceuticals in the environment: An introduction to the <i>ET&C</i> special issue. Environmental Toxicology and Chemistry, 2016, 35, 763-766.	2.2	7
201	Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters. Journal of Environmental Management, 2016, 174, 7-13.	3.8	7
202	Field evaluation of two risk indicators for predicting likelihood of pesticide transport to surface water from two orchards. Science of the Total Environment, 2016, 571, 819-825.	3.9	7
203	Measuring nutrient and pesticide movement in soils: benefits for catchment management. Australian Journal of Experimental Agriculture, 1998, 38, 725.	1.0	6
204	Ecological Risk Assessment for Terrestrial Ecosystems: The Summary of Discussions and Recommendations from the Adelaide Workshop (April 2004). Human and Ecological Risk Assessment (HERA), 2006, 12, 130-138.	1.7	6
205	The effect of solvent-conditioning on soil organic matter sorption affinity for diuron and phenanthrene. Chemosphere, 2009, 76, 1062-1066.	4.2	6
206	Sorption–desorption of indaziflam and its three metabolites in sandy soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 836-843.	0.7	6
207	Sorption of Pesticides and its Dependence on Soil Properties: Chemometrics Approach for Estimating Sorption. ACS Symposium Series, 2014, , 221-240.	0.5	6
208	Assessment of efficacy of biocides in different soil types for use in sorption studies of low molecular weight organic compounds. Soil Research, 2018, 56, 451.	0.6	6
209	Sorption and desorption behaviour of strychnine rodenticide in soils. Soil Research, 1997, 35, 491.	0.6	6
210	Sorption of Isoxaflutole Diketonitrile Degradate (DKN) and Dicamba in Unsaturated Soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 1071-1083.	0.7	5
211	Effects of thiobencarb in combinations with molinate and chlorpyrifos on selected soil microbial processes. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 226-234.	0.7	5
212	Photodegradation of three benzotriazoles induced by four FeIII–carboxylate complexes in water under ultraviolet irradiation. Environmental Chemistry, 2013, 10, 135.	0.7	5
213	The effect of irradiance and temperature on the role of photolysis in the removal of organic micropollutants under Antarctic conditions. Environmental Chemistry, 2013, 10, 417.	0.7	5
214	Organic carbon and salinity affect desorption of PFAS from estuarine sediments. Journal of Soils and Sediments, 2022, 22, 1302-1314.	1.5	5
215	Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt. Analytical Methods, 2022, 14, 1678-1689.	1.3	5
216	Degradation of strychnine by pure bacterial cultures isolated from South Australian agricultural soils. Soil Biology and Biochemistry, 1998, 30, 1623-1626.	4.2	4

#	Article	IF	CITATIONS
217	Determination of attenuation rates of recycled water disinfection byâ€products in a natural reservoir system using a laboratoryâ€based approach. Water and Environment Journal, 2014, 28, 358-364.	1.0	4
218	Coupled Sorption and Degradation Kinetics and Non-First Order Behavior. ACS Symposium Series, 2014, , 5-37.	0.5	4
219	Application of a simple-model to assess the ground-water contamination potential of pesticides. Soil Research, 1995, 33, 1031.	0.6	4
220	Transport and fate of organic contaminants in the subsurface. , 1996, , 95-124.		3
221	Degradation of 14C ring labeled pesticides in selected soils of Sri Lanka. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 477-481.	0.7	3
222	Pharmaceuticals and personal care products in the environment: Cultural and spiritual perspectives. Integrated Environmental Assessment and Management, 2013, 9, 164-166.	1.6	3
223	Contrasting effects of two antimicrobial agents (triclosan and triclocarban) on biomineralisation of an organophosphate pesticide in soils. Chemosphere, 2014, 107, 360-365.	4.2	3
224	Predicting bioaccessibility of contaminants of emerging concern in marine sediments using chemical methods. Journal of Soils and Sediments, 2018, 18, 1720-1728.	1.5	3
225	Environmental Risk Indicators. , 2018, , 197-206.		3
226	Fate and Behavior of Environmental Contaminants Arising From Health-Care Provision. , 2018, , 21-40.		3
227	Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils. Environmental Pollution, 2022, 309, 119754.	3.7	3
228	Geographical Extrapolation of Pesticide Environmental Fate Data: Challenges, Risks, and Opportunities. ACS Symposium Series, 2007, , 100-119.	0.5	2
229	Spatial Variability of Pesticide Sorption: Measurements and Integration to Pesticide Fate Models. ACS Symposium Series, 2014, , 255-274.	0.5	2
230	Regional Considerations for Targeted Use of Biochar in Agriculture and Remediation in Australia. SSSA Special Publication Series, 0, , 445-474.	0.2	2
231	Solid Phase Microextraction (SPME) Fibers: in situ Measurements of Endocrine Disrupting Chemicals in Seawater. Journal of the Brazilian Chemical Society, 2017, , .	0.6	2
232	Generic Guidelines on Integrated Analytical Approaches to Assess Indicators of Pesticide Management Practices at a Catchment Scale. , 2018, , 7-27.		2
233	Fate of copper in soil: effect of agrochemical (nano)formulations and soil properties. Environmental Science: Nano, 0, , .	2.2	2
234	Chapter 7 Temperature and Aging Effects on the Surface Speciation of Cd(II) at the Goethite–Water Interface. Developments in Earth and Environmental Sciences, 2007, , 187-204.	0.1	1

#	Article	IF	CITATIONS
235	Pollutants Persistent organic. , 2022, , .		1
236	Introduction to the Adelaide Workshop. Human and Ecological Risk Assessment (HERA), 2006, 12, 28-30.	1.7	0
237	Environmental Contaminants and Health Care: An Introduction. , 2018, , 1-5.		0
238	Innovative Chemistry for Environmental Enhancement. Chemistry International, 2020, 42, 41-44.	0.3	0
239	Modelling environmental impacts of agriculture, focusing on oil palm. Burleigh Dodds Series in Agricultural Science, 2018, , 265-314.	0.1	0