Karen V Smit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2622642/publications.pdf Version: 2024-02-01

KADEN V SMIT

#	Article	IF	CITATIONS
1	Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH 4 micro-inclusions and δ13 C– δ15 N–N content in Marange mixed-habit diamonds. Lithos, 2016, 265, 68-81.	1.4	66
2	Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochimica Et Cosmochimica Acta, 2014, 125, 308-337.	3.9	51
3	Sulfur isotopes in diamonds reveal differences in continent construction. Science, 2019, 364, 383-385.	12.6	45
4	Type Ib diamond formation and preservation in the West African lithospheric mantle: Re–Os age constraints from sulphide inclusions in Zimmi diamonds. Precambrian Research, 2016, 286, 152-166.	2.7	41
5	Peridotites from Attawapiskat, Canada: Mesoproterozoic Reworking of Palaeoarchaean Lithospheric Mantle beneath the Northern Superior Superterrane. Journal of Petrology, 2014, 55, 1829-1863.	2.8	31
6	Automated FTIR mapping of boron distribution in diamond. Diamond and Related Materials, 2019, 96, 207-215.	3.9	30
7	Re–Os isotopic composition of peridotitic sulphide inclusions in diamonds from Ellendale, Australia: Age constraints on Kimberley cratonic lithosphere. Geochimica Et Cosmochimica Acta, 2010, 74, 3292-3306.	3.9	28
8	Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton). Chemical Geology, 2019, 520, 21-32.	3.3	26
9	Deep carbon through time: Earth's diamond record and its implications for carbon cycling and fluid speciation in the mantle. Geochimica Et Cosmochimica Acta, 2020, 275, 99-122.	3.9	26
10	Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1ÂGa. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	22
11	The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root. Mineralogy and Petrology, 2018, 112, 325-336.	1.1	20
12	Geochronology of Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 567-636.	4.8	18
13	Diamonds and the Mantle Geodynamics of Carbon. , 2019, , 89-128.		16
14	Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African) Tj ETQq0	00 _{1.1} gBT/	Overlock 10
15	Morphology of Monocrystalline Diamond and its Inclusions. Reviews in Mineralogy and Geochemistry, 2022, 88, 119-166.	4.8	14
16	Geology and Development of the Lomonsov Diamond Deposit, Northwestern Russia. Gems & Gemology, 2017, 53, 144-167.	0.6	9

17	Natural-Color Pink, Purple, Red, and Brown Diamonds: Band of Many Colors. Gems & Gemology, 2019, , .	0.6	4
18	Black Diamonds from Marange (Zimbabwe): A Result of Natural Irradiation and Graphite Inclusions. Gems & Gemology, 2018, 54, 132-148.	0.6	4