Suling Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621870/publications.pdf

Version: 2024-02-01

51492 57631 15,123 92 44 86 citations h-index g-index papers 93 93 93 18538 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Seminars in Cancer Biology, 2022, 82, 11-25.	4.3	28
2	Deacetylation of MTHFD2 by SIRT4 senses stress signal to inhibit cancer cell growth by remodeling folate metabolism. Journal of Molecular Cell Biology, 2022, 14, .	1.5	12
3	Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nature Communications, 2022, 13, 1371.	5.8	53
4	PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Molecular Therapy, 2022, 30, 2603-2617.	3.7	49
5	Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization., 2022, 10, e003793.		14
6	UCP1 regulates ALDH-positive breast cancer stem cells through releasing the suppression of Snail on FBP1. Cell Biology and Toxicology, 2021, 37, 277-291.	2.4	12
7	Cancer Stem Cells and Neovascularization. Cells, 2021, 10, 1070.	1.8	23
8	TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nature Communications, 2021, 12, 4413.	5.8	19
9	ALDH1A1 Activity in Tumor-Initiating Cells Remodels Myeloid-Derived Suppressor Cells to Promote Breast Cancer Progression. Cancer Research, 2021, 81, 5919-5934.	0.4	59
10	Single-cell transcriptomics reveal the heterogeneity and dynamic of cancer stem-like cells during breast tumor progression. Cell Death and Disease, 2021, 12, 979.	2.7	11
11	Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Frontiers in Oncology, 2021, 11, 722624.	1.3	15
12	Membrane-bound TNF mediates microtubule-targeting chemotherapeutics-induced cancer cytolysis via juxtacrine inter-cancer-cell death signaling. Cell Death and Differentiation, 2020, 27, 1569-1587.	5.0	11
13	IL1R2 Blockade Suppresses Breast Tumorigenesis and Progression by Impairing USP15â€Dependent BMI1 Stability. Advanced Science, 2020, 7, 1901728.	5.6	36
14	Breast Cancer: IL1R2 Blockade Suppresses Breast Tumorigenesis and Progression by Impairing USP15â€Dependent BMI1 Stability (Adv. Sci. 1/2020). Advanced Science, 2020, 7, 2070002.	5.6	0
15	Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacological Research, 2020, 152, 104628.	3.1	48
16	Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nature Cell Biology, 2020, 22, 716-727.	4.6	70
17	Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacological Research, 2020, 155, 104741.	3.1	19
18	NOTCH4 maintains quiescent mesenchymal-like breast cancer stem cells via transcriptionally activating SLUG and GAS1 in triple-negative breast cancer. Theranostics, 2020, 10, 2405-2421.	4.6	51

#	Article	IF	CITATIONS
19	Interfering MSN-NONO complex–activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Science Advances, 2020, 6, eaaw9960.	4.7	26
20	Mifepristone Derivative FZU-00,003 Suppresses Triple-negative Breast Cancer Cell Growth partially via miR-153-KLF5 axis. International Journal of Biological Sciences, 2020, 16, 611-619.	2.6	14
21	CCL20 Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1231, 53-65.	0.8	38
22	Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. Journal of Clinical Investigation, 2019, 129, 1030-1046.	3.9	138
23	Aurora A Inhibition Eliminates Myeloid Cell–Mediated Immunosuppression and Enhances the Efficacy of Anti–PD-L1 Therapy in Breast Cancer. Cancer Research, 2019, 79, 3431-3444.	0.4	61
24	The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Science Advances, 2019, 5, eaat9820.	4.7	95
25	SHON expression predicts response and relapse risk of breast cancer patients after anthracycline-based combination chemotherapy or tamoxifen treatment. British Journal of Cancer, 2019, 120, 728-745.	2.9	3
26	Cooperativity of co-factor NR2F2 with Pioneer Factors GATA3, FOXA1 in promoting ERα function. Theranostics, 2019, 9, 6501-6516.	4.6	25
27	Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biology and Toxicology, 2019, 35, 161-177.	2.4	79
28	Discovery of novel mifepristone derivatives via suppressing KLF5 expression for the treatment of triple-negative breast cancer. European Journal of Medicinal Chemistry, 2018, 146, 354-367.	2.6	16
29	Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death and Disease, 2018, 9, 126.	2.7	45
30	Transcriptional profiles of different states of cancer stem cells in triple-negative breast cancer. Molecular Cancer, 2018, 17, 65.	7.9	48
31	IL6 blockade potentiates the anti-tumor effects of \hat{I}^3 -secretase inhibitors in Notch3-expressing breast cancer. Cell Death and Differentiation, 2018, 25, 330-339.	5.0	38
32	NMT1 inhibition modulates breast cancer progression through stress-triggered JNK pathway. Cell Death and Disease, 2018, 9, 1143.	2.7	30
33	SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Reports, 2018, 25, 1485-1500.e4.	2.9	63
34	miR-200c/141 Regulates Breast Cancer Stem Cell Heterogeneity via Targeting HIPK1/ \hat{l}^2 -Catenin Axis. Theranostics, 2018, 8, 5801-5813.	4.6	54
35	Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nature Communications, 2018, 9, 5200.	5.8	71
36	Development of a novel method for rapid cloning of shRNA vectors, which successfully knocked down CD44 in mesenchymal tripleâ€negative breast cancer cells. Cancer Communications, 2018, 38, 1-5.	3.7	8

#	Article	IF	CITATIONS
37	Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clinical and Translational Medicine, 2018, 7, 27.	1.7	60
38	Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance. Nature Communications, 2018, 9, 4315.	5.8	82
39	CCL20 triggered by chemotherapy hinders the therapeutic efficacy of breast cancer. PLoS Biology, 2018, 16, e2005869.	2.6	60
40	Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERI±/HGF/Met Pathway. Diabetes, 2017, 66, 1535-1547.	0.3	36
41	RAD51 Mediates Resistance of Cancer Stem Cells to PARP Inhibition in Triple-Negative Breast Cancer. Clinical Cancer Research, 2017, 23, 514-522.	3.2	124
42	Rad51 inhibition sensitizes breast cancer stem cells to PARP inhibitor in triple-negative breast cancer. Chinese Journal of Cancer, 2017, 36, 37.	4.9	6
43	High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Optics Express, 2017, 25, 8144.	1.7	33
44	MiR-200c Inhibits the Tumor Progression of Glioma via Targeting Moesin. Theranostics, 2017, 7, 1663-1673.	4.6	40
45	Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression. Theranostics, 2016, 6, 533-544.	4.6	103
46	Noncoding RNAs in Cancer Cell Plasticity. Advances in Experimental Medicine and Biology, 2016, 927, 173-189.	0.8	10
47	The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells. Protein and Cell, 2016, 7, 89-99.	4.8	31
48	Breast Cancer Stem Cells: Current Advances and Clinical Implications. Methods in Molecular Biology, 2015, 1293, 1-49.	0.4	85
49	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164
50	SOCS3-mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene, 2015, 34, 671-680.	2.6	72
51	Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget, 2015, 6, 3709-3721.	0.8	49
52	Self-Renewal Pathways in Mammary Stem Cells and Carcinogenesis. , 2015, , 155-174.		0
53	Applications of nanotechnology in targeting cancer stem cells. Chinese Science Bulletin, 2015, 60, 3417-3423.	0.4	0
54	Targeting the c-Met/FZD8 Signaling Axis Eliminates Patient-Derived Cancer Stem–like Cells in Head and Neck Squamous Carcinomas. Cancer Research, 2014, 74, 7546-7559.	0.4	88

#	Article	IF	Citations
55	MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–like Cells and Breast Tumor Development. Cancer Research, 2014, 74, 6648-6660.	0.4	59
56	Artemin, a Member of the Glial Cell Line-derived Neurotrophic Factor Family of Ligands, Is HER2-regulated and Mediates Acquired Trastuzumab Resistance by Promoting Cancer Stem Cell-like Behavior in Mammary Carcinoma Cells. Journal of Biological Chemistry, 2014, 289, 16057-16071.	1.6	27
57	Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts. Stem Cell Reports, 2014, 2, 78-91.	2.3	854
58	Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells. Stem Cell Reports, 2014, 2, 780-793.	2.3	42
59	Role of Cancer Stem Cell in Mammary Carcinogenesis and Its Clinical Implication. , 2013, , 189-197.		0
60	Distinct FAK Activities Determine Progenitor and Mammary Stem Cell Characteristics. Cancer Research, 2013, 73, 5591-5602.	0.4	52
61	MicroRNA93 Regulates Proliferation and Differentiation of Normal and Malignant Breast Stem Cells. PLoS Genetics, 2012, 8, e1002751.	1.5	150
62	Artemin Stimulates Radio- and Chemo-resistance by Promoting TWIST1-BCL-2-dependent Cancer Stem Cell-like Behavior in Mammary Carcinoma Cells. Journal of Biological Chemistry, 2012, 287, 42502-42515.	1.6	43
63	Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population. Molecular Cell, 2012, 47, 570-584.	4.5	458
64	Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 2012, 31, 333-341.	2.6	77
65	Role of microRNAs in the Regulation of Breast Cancer Stem Cells. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 15-21.	1.0	84
66	Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. International Journal of Cancer, 2012, 130, 29-39.	2.3	230
67	Regulation of Cancer Stem Cells by Cytokine Networks: Attacking Cancer's Inflammatory Roots. Clinical Cancer Research, 2011, 17, 6125-6129.	3.2	290
68	Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Research, 2011, 71, 614-624.	0.4	573
69	Breast cancer stem cells, cytokine networks, and the tumor microenvironment. Journal of Clinical Investigation, 2011, 121, 3804-3809.	3.9	517
70	Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 2010, 122, 777-785.	1.1	432
71	Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells. Clinical Cancer Research, 2010, 16, 2580-2590.	3.2	478
72	Targeting Breast Cancer Stem Cells. Journal of Clinical Oncology, 2010, 28, 4006-4012.	0.8	311

#	Article	IF	CITATIONS
73	CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. Journal of Clinical Investigation, 2010, 120, 485-497.	3.9	658
74	Identification of single chain antibodies to breast cancer stem cells using phage display. Biotechnology Progress, 2009, 25, 1780-1787.	1.3	9
75	Getting to the Root of BRCA1-Deficient Breast Cancer. Cell Stem Cell, 2009, 5, 229-230.	5.2	23
76	Mammary Epithelial-Specific Ablation of the Focal Adhesion Kinase Suppresses Mammary Tumorigenesis by Affecting Mammary Cancer Stem/Progenitor Cells. Cancer Research, 2009, 69, 466-474.	0.4	193
77	Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer, 2008, 8, 208.	1.1	42
78	BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1680-1685.	3.3	417
79	ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007, 1, 555-567.	5.2	3,550
80	Hedgehog Signaling and Bmi-1 Regulate Self-renewal of Normal and Malignant Human Mammary Stem Cells. Cancer Research, 2006, 66, 6063-6071.	0.4	1,145
81	Cancer Stem Cells: An Old Idea—A Paradigm Shift. Cancer Research, 2006, 66, 1883-1890.	0.4	1,269
82	Cancer Stem Cells Implications for Development of More Effective Therapies., 2006,, 125-136.		3
83	Conjugated linoleic acid (CLA) up-regulates the estrogen-regulated cancer suppressor gene, protein tyrosine phosphatase gamma (PTPgama), in human breast cells. Anticancer Research, 2006, 26, 27-34.	0.5	15
84	Conjugated linoleic acid (CLA) modulates prostaglandin E2 (PGE2) signaling in canine mammary cells. Anticancer Research, 2006, 26, 889-98.	0.5	13
85	Stem Cells in Mammary Development and Carcinogenesis: Implications for Prevention and Treatment. Stem Cell Reviews and Reports, 2005, 1, 207-214.	5.6	115
86	Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 2005, 7, 86-95.	2.2	375
87	Effects of human breast stromal cells on conjugated linoleic acid (CLA) modulated vascular endothelial growth factor-A (VEGF-A) expression in MCF-7 cells. Anticancer Research, 2005, 25, 4061-8.	0.5	11
88	Transformation of MCF-10A Human Breast Epithelial Cells by Zeranol and Estradiol-17beta. Breast Journal, 2004, 10, 514-521.	0.4	56
89	Function analysis of estrogenically regulated protein tyrosine phosphatase Î ³ (PTPÎ ³) in human breast cancer cell line MCF-7. Oncogene, 2004, 23, 1256-1262.	2.6	33
90	Involvement of breast epithelial-stromal interactions in the regulation of protein tyrosine phosphatase-Î ³ (PTPÎ ³) mRNA expression by estrogenically active agents. Breast Cancer Research and Treatment, 2002, 71, 21-35.	1.1	15

Suling Liu

#	Article	IF	CITATION
91	The (-)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Research, 2002, 22, 33-8.	0.5	62
92	Estrogenic down-regulation of protein tyrosine phosphatase gamma (PTP gamma) in human breast is associated with estrogen receptor alpha. Anticancer Research, 2002, 22, 3917-23.	0.5	17