Wynand P Roos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621743/publications.pdf

Version: 2024-02-01

49 papers

6,338 citations

186265 28 h-index 214800 47 g-index

52 all docs 52 docs citations

times ranked

52

10265 citing authors

#	Article	IF	CITATIONS
1	The epigenetic modifier HDAC2 and the checkpoint kinase ATM determine the responses of microsatellite instable colorectal cancer cells to 5-fluorouracil. Cell Biology and Toxicology, 2023, 39, 2401-2419.	5.3	6
2	Epigenetic Antiâ€Cancer Treatment With a Stabilized Carbocyclic Decitabine Analogue. Chemistry - A European Journal, 2022, 28, .	3.3	3
3	Class I HDAC overexpression promotes temozolomide resistance in glioma cells by regulating RAD18 expression. Cell Death and Disease, 2022, 13, 293.	6.3	20
4	In Vitro Assessment of the Genotoxic Hazard of Novel Hydroxamic Acid- and Benzamide-Type Histone Deacetylase Inhibitors (HDACi). International Journal of Molecular Sciences, 2020, 21, 4747.	4.1	3
5	Anticancer drug and ionizing radiation-induced DNA damage differently influences transcription activity and DDR-related stress responses of an endothelial monolayer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118678.	4.1	7
6	The SIAH1–HIPK2–p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death. Molecular Cancer Research, 2019, 17, 1129-1141.	3.4	40
7	Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR–CHK1, p21, and NF-κB. Cancer Research, 2019, 79, 99-113.	0.9	126
8	XRCC3 contributes to temozolomide resistance of glioblastoma cells by promoting DNA double-strand break repair. Cancer Letters, 2018, 424, 119-126.	7.2	34
9	Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Letters, 2018, 430, 34-46.	7.2	17
10	Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 29-39.	7.4	43
11	Assessing the Effect of Class I Histone Deacetylase Activity on DNA Double-Strand Break Repair by Homologous Recombination. Methods in Molecular Biology, 2017, 1510, 115-123.	0.9	2
12	DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer, 2016, 16, 20-33.	28.4	870
13	The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine and Growth Factor Reviews, 2015, 26, 405-413.	7.2	23
14	Targeting components of the alternative NHEJ pathway sensitizes KRAS mutant leukemic cells to chemotherapy. Blood, 2014, 123, 2355-2366.	1.4	39
15	Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair, 2014, 18, 31-43.	2.8	67
16	Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene, 2014, 33, 1964-1974.	5.9	64
17	B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells. Oncotarget, 2014, 5, 12607-12620.	1.8	16
18	Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide. Molecular Cancer Therapeutics, 2013, 12, 2529-2540.	4.1	85

#	Article	IF	CITATIONS
19	DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Letters, 2013, 332, 237-248.	7.2	720
20	Survival and Death Strategies in Glioma Cells: Autophagy, Senescence and Apoptosis Triggered by a Single Type of Temozolomide-Induced DNA Damage. PLoS ONE, 2013, 8, e55665.	2.5	218
21	Rac1 Protein Signaling Is Required for DNA Damage Response Stimulated by Topoisomerase II Poisons. Journal of Biological Chemistry, 2012, 287, 38590-38599.	3.4	55
22	Survival and Death Strategies in Cells Exposed to Genotoxins. Issues in Toxicology, 2012, , 215-238.	0.1	0
23	Rad51 and BRCA2 - New Molecular Targets for Sensitizing Glioma Cells to Alkylating Anticancer Drugs. PLoS ONE, 2011, 6, e27183.	2.5	79
24	O6-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: Enzyme activity, promoter methylation and immunohistochemistry. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 179-190.	7.4	142
25	Intrinsic Anticancer Drug Resistance of Malignant Melanoma Cells Is Abrogated by IFN-β and Valproic Acid. Cancer Research, 2011, 71, 4150-4160.	0.9	31
26	Processing of O ⁶ -methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle, 2010, 9, 168-178.	2.6	128
27	Nijmegen Breakage Syndrome Protein (NBN) Causes Resistance to Methylating Anticancer Drugs Such as Temozolomide. Molecular Pharmacology, 2010, 78, 943-951.	2.3	16
28	Response of pancreatic cancer cells treated with interferon- $\hat{l}\pm$ or \hat{l}^2 and co-exposed to ionising radiation. International Journal of Radiation Biology, 2010, 86, 732-741.	1.8	10
29	DNA Damage Response and the Balance Between Cell Survival and Cell Death. , 2010, , 95-108.		0
30	The Translesion Polymerase Rev3L in the Tolerance of Alkylating Anticancer Drugs. Molecular Pharmacology, 2009, 76, 927-934.	2.3	45
31	Cisplatin sensitivity is related to late DNA damage processing and checkpoint control rather than to the early DNA damage response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 32-41.	1.0	28
32	Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs. DNA Repair, 2009, 8, 72-86.	2.8	91
33	Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. British Journal of Cancer, 2009, 100, 322-333.	6.4	90
34	DNA Replication Arrest in Response to Genotoxic Stress Provokes Early Activation of Stress-Activated Protein Kinases (SAPK/JNK). Journal of Molecular Biology, 2009, 385, 1409-1421.	4.2	19
35	p53 Mutant Human Glioma Cells Are Sensitive to UV-C-Induced Apoptosis Due to Impaired Cyclobutane Pyrimidine Dimer Removal. Molecular Cancer Research, 2009, 7, 237-246.	3.4	28
36	WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair, 2008, 7, 1999-2009.	2.8	20

#	Article	IF	CITATIONS
37	Apoptotic death induced by the cyclophosphamide analogue mafosfamide in human lymphoblastoid cells: Contribution of DNA replication, transcription inhibition and Chk/p53 signaling. Toxicology and Applied Pharmacology, 2008, 229, 20-32.	2.8	46
38	Artesunate Derived from Traditional Chinese Medicine Induces DNA Damage and Repair. Cancer Research, 2008, 68, 4347-4351.	0.9	180
39	DNA Methylation Damage: Formation, Repair and Biological Consequences. , 2007, , 99-121.		5
40	Differential Sensitivity of Malignant Glioma Cells to Methylating and Chloroethylating Anticancer Drugs: p53 Determines the Switch by Regulating $\langle i \rangle$, and DNA Double-Strand Breaks. Cancer Research, 2007, 67, 11886-11895.	0.9	96
41	MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair, 2007, 6, 1079-1099.	2.8	549
42	DNA repair in defence against genotoxin-induced apoptosis. Toxicology Letters, 2006, 164, S56-S57.	0.8	2
43	DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 2006, 12, 440-450.	6.7	1,272
44	O ⁶ â€methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. Journal of Neurochemistry, 2006, 96, 766-776.	3.9	290
45	Lovastatin Protects Human Endothelial Cells from Killing by Ionizing Radiation without Impairing Induction and Repair of DNA Double-Strand Breaks. Clinical Cancer Research, 2006, 12, 933-939.	7.0	87
46	Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene, 2004, 23, 359-367.	5.9	114
47	Mechanisms of human DNA repair: an update. Toxicology, 2003, 193, 3-34.	4.2	486
48	Apoptosis induced by MNNG in human TK6 lymphoblastoid cells is p53 and Fas/CD95/Apo-1 related. Mutation Research - Reviews in Mutation Research, 2003, 544, 167-172.	5.5	24
49	Title is missing!. American Journal of Clinical Oncology: Cancer Clinical Trials, 2003, 26, e1-e6.	1.3	1