Wolfgang Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621498/publications.pdf

Version: 2024-02-01

174 papers 145,325 citations

76 h-index 162 g-index

209 all docs 209 docs citations

times ranked

209

177504 citing authors

#	Article	IF	CITATIONS
1	Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15, 550.	8.8	58,325
2	HTSeqâ€"a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31, 166-169.	4.1	17,270
3	Differential expression analysis for sequence count data. Genome Biology, 2010, 11, R106.	8.8	13,707
4	Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 2004, 5, R80.	9.6	10,796
5	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
6	Software for Computing and Annotating Genomic Ranges. PLoS Computational Biology, 2013, 9, e1003118.	3.2	3,262
7	Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 2009, 4, 1184-1191.	12.0	3,084
8	Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 2015, 12, 115-121.	19.0	3,070
9	Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 2002, 18, S96-S104.	4.1	2,012
10	BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 2005, 21, 3439-3440.	4.1	1,781
11	Detecting differential usage of exons from RNA-seq data. Genome Research, 2012, 22, 2008-2017.	5.5	1,341
12	Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols, 2013, 8, 1765-1786.	12.0	1,124
13	arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics, 2009, 25, 415-416.	4.1	885
14	Bidirectional promoters generate pervasive transcription in yeast. Nature, 2009, 457, 1033-1037.	27.8	872
15	Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature, 2010, 464, 721-727.	27.8	768
16	Independent filtering increases detection power for high-throughput experiments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9546-9551.	7.1	720
17	Human haematopoietic stem cell lineage commitment is a continuous process. Nature Cell Biology, 2017, 19, 271-281.	10.3	709
18	Multiâ€Omics Factor Analysis—a framework for unsupervised integration of multiâ€omics data sets. Molecular Systems Biology, 2018, 14, e8124.	7.2	659

#	Article	IF	CITATIONS
19	EBImageâ€"an R package for image processing with applications to cellular phenotypes. Bioinformatics, 2010, 26, 979-981.	4.1	616
20	A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5320-5325.	7.1	613
21	High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature, 2008, 454, 479-485.	27.8	554
22	Expression Atlas updateâ€"an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Research, 2016, 44, D746-D752.	14.5	526
23	Variation in Transcription Factor Binding Among Humans. Science, 2010, 328, 232-235.	12.6	521
24	Gene expression across mammalian organ development. Nature, 2019, 571, 505-509.	27.8	490
25	Orchestrating single-cell analysis with Bioconductor. Nature Methods, 2020, 17, 137-145.	19.0	488
26	Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature Methods, 2016, 13, 577-580.	19.0	483
27	Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols, 2015, 10, 1567-1593.	12.0	481
28	Addressing Accuracy and Precision Issues in iTRAQ Quantitation. Molecular and Cellular Proteomics, 2010, 9, 1885-1897.	3.8	471
29	Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nature Protocols, 2018, 13, 530-550.	12.0	454
30	Enhancer loops appear stable during development and are associated with paused polymerase. Nature, 2014, 512, 96-100.	27.8	450
31	Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Research, 2008, 36, e11-e11.	14.5	447
32	Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell, 2014, 15, 507-522.	11.1	439
33	The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6, 10127.	12.8	385
34	Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Research, 2018, 46, D246-D251.	14.5	365
35	The Genomic and Transcriptomic Landscape of a HeLa Cell Line. G3: Genes, Genomes, Genetics, 2013, 3, 1213-1224.	1.8	355
36	Directional tissue migration through a self-generated chemokine gradient. Nature, 2013, 503, 285-289.	27.8	320

#	Article	IF	CITATIONS
37	A global map of human gene expression. Nature Biotechnology, 2010, 28, 322-324.	17.5	315
38	RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research, 2015, 4, 1070.	1.6	304
39	Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions. Cell, 2015, 162, 1051-1065.	28.9	304
40	SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics, 2015, 31, 3673-3675.	4.1	284
41	Analysis of cell-based RNAi screens. Genome Biology, 2006, 7, R66.	9.6	271
42	Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nature Cell Biology, 2014 , 16 , 27 - 37 .	10.3	262
43	Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nature Methods, 2015, 12, 1129-1131.	19.0	244
44	Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nature Biotechnology, 2012, 30, 708-714.	17.5	239
45	Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E14-E16.	27.8	233
46	Highly Coordinated Proteome Dynamics during Reprogramming of Somatic Cells to Pluripotency. Cell Reports, 2012, 2, 1579-1592.	6.4	216
47	Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Research, 2018, 46, 582-592.	14.5	209
48	The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances. Developmental Cell, 2016, 39, 529-543.	7.0	194
49	Protein quality control at the inner nuclear membrane. Nature, 2014, 516, 410-413.	27.8	188
50	Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nature Communications, 2019, 10, 1155.	12.8	181
51	Differential expression analysis for sequence count data. Nature Precedings, 0, , .	0.1	180
52	Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nature Methods, 2011, 8, 341-346.	19.0	173
53	Antisense expression increases gene expression variability and locus interdependency. Molecular Systems Biology, 2011, 7, 468.	7.2	173
54	Biological plasticity rescues target activity in CRISPR knock outs. Nature Methods, 2019, 16, 1087-1093.	19.0	159

#	Article	IF	CITATIONS
55	Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program. Molecular Cell, 2016, 61, 260-273.	9.7	155
56	Ringo – an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics, 2007, 8, 221.	2.6	148
57	Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunology, 2015, 16, 933-941.	14.5	148
58	Clustering phenotype populations by genomeâ€wide RNAi and multiparametric imaging. Molecular Systems Biology, 2010, 6, 370.	7.2	141
59	Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics, 2006, 22, 1963-1970.	4.1	134
60	Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Molecular Systems Biology, 2020, 16, e9596.	7.2	131
61	Parameter estimation for the calibration and variance stabilization of microarray data. Statistical Applications in Genetics and Molecular Biology, 2003, 2, Article3.	0.6	128
62	The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy. Cell, 2019, 176, 1054-1067.e12.	28.9	125
63	Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biology, 2010, 11, R93.	9.6	124
64	Drug-perturbation-based stratification of blood cancer. Journal of Clinical Investigation, 2017, 128, 427-445.	8.2	124
65	Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nature Methods, 2013, 10, 427-431.	19.0	122
66	glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data. Bioinformatics, 2021, 36, 5701-5702.	4.1	116
67	Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. Bioinformatics, 2013, 29, 1275-1282.	4.1	113
68	Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nature Biotechnology, 2020, 38, 303-308.	17.5	111
69	Relating CNVs to transcriptome data at fine resolution: Assessment of the effect of variant size, type, and overlap with functional regions. Genome Research, 2011, 21, 2004-2013.	5.5	109
70	Graphs in molecular biology. BMC Bioinformatics, 2007, 8, S8.	2.6	106
71	miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut, 2017, 66, 1537.1-1538.	12.1	105
72	cAMP Response Element-Binding Protein Is a Primary Hub of Activity-Driven Neuronal Gene Expression. Journal of Neuroscience, 2011, 31, 18237-18250.	3.6	103

#	Article	IF	Citations
73	Multi-domain protein families and domain pairs: comparison with known structures and a random model of domain recombination. Journal of Structural and Functional Genomics, 2003, 4, 67-78.	1.2	100
74	Importing ArrayExpress datasets into R/Bioconductor. Bioinformatics, 2009, 25, 2092-2094.	4.1	100
75	High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biology, 2010, 11, R24.	9.6	99
76	Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nature Cell Biology, 2020, 22, 896-906.	10.3	93
77	Alternative polyadenylation diversifies postâ€transcriptional regulation by selective <scp>RNA</scp> –protein interactions. Molecular Systems Biology, 2014, 10, 719.	7.2	91
78	FourCSeq: analysis of 4C sequencing data. Bioinformatics, 2015, 31, 3085-3091.	4.1	91
79	Microarray data quality control improves the detection of differentially expressed genes. Genomics, 2010, 95, 138-142.	2.9	88
80	Recurrent CDKN1B (p27) mutations in hairy cell leukemia. Blood, 2015, 126, 1005-1008.	1.4	88
81	Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF. Cell Reports, 2019, 29, 3147-3159.e12.	6.4	84
82	Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments. BMC Genomics, 2004, 5, 29.	2.8	79
83	A chemical–genetic interaction map of small molecules using highâ€throughput imaging in cancer cells. Molecular Systems Biology, 2015, 11, 846.	7.2	79
84	A map of directional genetic interactions in a metazoan cell. ELife, 2015, 4, .	6.0	78
85	Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia, 2018, 32, 774-787.	7.2	75
86	Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins*. Molecular and Cellular Proteomics, 2019, 18, 2506-2515.	3.8	75
87	A Compendium to Ensure Computational Reproducibility in High-Dimensional Classification Tasks. Statistical Applications in Genetics and Molecular Biology, 2004, 3, 1-24.	0.6	72
88	Assessing affymetrix GeneChip microarray quality. BMC Bioinformatics, 2011, 12, 137.	2.6	71
89	Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3. BMC Genomics, 2010, 11, 349.	2.8	68
90	Bioconductor Case Studies. , 2008, , .		65

#	Article	IF	Citations
91	Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clinical Cancer Research, 2005, 11, 646-55.	7.0	64
92	Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. Cell Systems, 2018, 7, 482-495.e10.	6.2	62
93	In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation. BMC Bioinformatics, 2007, 8, 461.	2.6	61
94	Functional Outcomes and Quality of Life After Radical Prostatectomy Only Versus a Combination of Prostatectomy with Radiation and Hormonal Therapy. European Urology, 2017, 71, 330-336.	1.9	57
95	Genomic organization of transcriptomes in mammals: Coregulation and cofunctionality. Genomics, 2007, 89, 580-587.	2.9	56
96	A Discrete Transition Zone Organizes the Topological and Regulatory Autonomy of the Adjacent Tfap2c and Bmp7 Genes. PLoS Genetics, 2015, 11, e1004897.	3.5	56
97	RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research, 0, 4, 1070.	1.6	55
98	Organelle proteomics experimental designs and analysis. Proteomics, 2010, 10, 3957-3969.	2.2	54
99	Singleâ€cell polyadenylation site mapping reveals 3′ isoform choice variability. Molecular Systems Biology, 2015, 11, 812.	7.2	52
100	High-Content siRNA Screen Reveals Global ENaC Regulators and Potential Cystic Fibrosis Therapy Targets. Cell, 2013, 154, 1390-1400.	28.9	50
101	Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics, 2001, 17, S107-S114.	4.1	49
102	arrayMagic: two-colour cDNA microarray quality control and preprocessing. Bioinformatics, 2005, 21, 554-556.	4.1	48
103	The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Reports, 2019, 27, 3097-3106.e5.	6.4	47
104	Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Reports, 2020, 33, 108308.	6.4	46
105	Combinatorial effects of four histone modifications in transcription and differentiation. Genomics, 2008, 91, 41-51.	2.9	45
106	Quality Assessment and Data Analysis for microRNA Expression Arrays. Nucleic Acids Research, 2009, 37, e17-e17.	14.5	45
107	From ORFeome to Biology: A Functional Genomics Pipeline. Genome Research, 2004, 14, 2136-2144.	5 . 5	44
108	Systematic comparison of surface coatings for protein microarrays. Proteomics, 2005, 5, 4705-4712.	2.2	42

#	Article	IF	CITATIONS
109	Making the most of high-throughput protein-interaction data. Genome Biology, 2007, 8, 112.	9.6	41
110	A Large-Scale RNAi Screen Identifies <i>Deaf1 </i> as a Regulator of Innate Immune Responses in <i>Drosophila</i> . Journal of Innate Immunity, 2010, 2, 181-194.	3.8	39
111	Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Molecular Cell, 2021, 81, 2460-2476.e11.	9.7	39
112	Coverage and error models of protein-protein interaction data by directed graph analysis. Genome Biology, 2007, 8, R186.	9.6	37
113	The LIFEdb database in 2006. Nucleic Acids Research, 2006, 34, D415-D418.	14.5	36
114	A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles. Nature Communications, 2020, 11, 5783.	12.8	34
115	gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biology, 2020, 21, 53.	8.8	34
116	Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. BMC Biology, 2007, 5, 25.	3.8	32
117	Transcriptome-wide Profiling and Posttranscriptional Analysis of Hematopoietic Stem/Progenitor Cell Differentiation toward Myeloid Commitment. Stem Cell Reports, 2014, 3, 858-875.	4.8	32
118	Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. Nature Cancer, 2021, 2, 853-864.	13.2	32
119	matchprobes: a Bioconductor package for the sequence-matching of microarray probe elements. Bioinformatics, 2004, 20, 1651-1652.	4.1	31
120	Genomeâ€wide allele―and strandâ€specific expression profiling. Molecular Systems Biology, 2009, 5, 274.	7.2	31
121	Covariate Powered Cross-Weighted Multiple Testing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2021, 83, 720-751.	2.2	26
122	TRRAP is essential for regulating the accumulation of mutant and wild-type p53 in lymphoma. Blood, 2018, 131, 2789-2802.	1.4	25
123	A user guide for the online exploration and visualization of PCAWG data. Nature Communications, 2020, $11,3400.$	12.8	23
124	Statistical methods and software for the analysis of highthroughput reverse genetic assays using flow cytometry readouts. Genome Biology, 2006, 7, R77.	9.6	22
125	Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biology, 2011, 12, R36.	8.8	22
126	A genetic interaction map of cell cycle regulators. Molecular Biology of the Cell, 2016, 27, 1397-1407.	2.1	22

#	Article	IF	CITATIONS
127	Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Scientific Reports, 2018, 8, 12046.	3.3	22
128	Detecting differential usage of exons from RNA-Seq data. Nature Precedings, 0, , .	0.1	21
129	Functional Profiling: From Microarrays via Cell-Based Assays to Novel Tumor Relevant Modulators of the Cell Cycle. Cancer Research, 2005, 65, 7733-7742.	0.9	19
130	SpeCond: a method to detect condition-specific gene expression. Genome Biology, 2011, 12, R101.	9.6	19
131	MDM4 Is Targeted by 1q Gain and Drives Disease in Burkitt Lymphoma. Cancer Research, 2019, 79, 3125-3138.	0.9	19
132	Analyzing ChIP-chip Data Using Bioconductor. PLoS Computational Biology, 2008, 4, e1000227.	3.2	17
133	Estimating node degree in bait-prey graphs. Bioinformatics, 2008, 24, 218-224.	4.1	17
134	Detecting differential usage of exons from RNA-Seq data. Nature Precedings, 0, , .	0.1	17
135	Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity. Haematologica, 2019, 104, 1830-1840.	3.5	17
136	The Protein Landscape of Chronic Lymphocytic Leukemia (CLL). Blood, 2021, , .	1.4	17
137	Top-down standards will not serve systems biology. Nature, 2006, 440, 24-24.	27.8	16
138	Measuring genetic interactions in human cells by RNAi and imaging. Nature Protocols, 2014, 9, 2341-2353.	12.0	16
139	Survey of ex vivo drug combination effects in chronic lymphocytic leukemia reveals synergistic drug effects and genetic dependencies. Leukemia, 2020, 34, 2934-2950.	7.2	16
140	Control of PD-L1 expression in CLL-cells by stromal triggering of the Notch-c-Myc-EZH2 oncogenic signaling axis., 2021, 9, e001889.		15
141	Extracting quantitative genetic interaction phenotypes from matrix combinatorial RNAi. BMC Bioinformatics, 2011, 12, 342.	2.6	14
142	Research Techniques Made Simple: Bioinformatics for Genome-Scale Biology. Journal of Investigative Dermatology, 2017, 137, e163-e168.	0.7	14
143	Analysis of Microarray Gene Expression Data. , 2004, , .		13
144	Reply to Talloen et al.: Independent filtering is a generic approach that needs domain specific adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E175-E175.	7.1	13

#	Article	IF	Citations
145	Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay. BMC Bioinformatics, 2013, 14, 308.	2.6	13
146	CellH5: a format for data exchange in high-content screening. Bioinformatics, 2013, 29, 1580-1582.	4.1	13
147	Dissection of CD20 regulation in lymphoma using RNAi. Leukemia, 2016, 30, 2409-2412.	7.2	13
148	TimerQuant: A modelling approach to tandem fluorescent timer design and data interpretation for measuring protein turnover in embryos. Development (Cambridge), 2015, 143, 174-9.	2.5	12
149	Miniaturized Drug Sensitivity and Resistance Test on Patient-Derived Cells Using Droplet-Microarray. SLAS Technology, 2021, 26, 274-286.	1.9	11
150	Contributions of the EMERALD project to assessing and improving microarray data quality. BioTechniques, 2011, 50, 27-31.	1.8	11
151	Rintact: enabling computational analysis of molecular interaction data from the IntAct repository. Bioinformatics, 2008, 24, 1100-1101.	4.1	9
152	A clash of cultures in discussions of the P value. Nature Methods, 2016, 13, 607-607.	19.0	9
153	An autologous culture model of nodal B-cell lymphoma identifies ex vivo determinants of response to bispecific antibodies. Blood Advances, 2021, 5, 5060-5071.	5.2	9
154	Adaptive penalization in high-dimensional regression and classification with external covariates using variational Bayes. Biostatistics, 2021, 22, 348-364.	1.5	8
155	Array-based genotyping in <i>S.cerevisiae</i> using semi-supervised clustering. Bioinformatics, 2009, 25, 1056-1062.	4.1	7
156	High-Throughput Flow Cytometry–Based Assay to Identify Apoptosis-Inducing Proteins. Journal of Biomolecular Screening, 2007, 12, 510-520.	2.6	6
157	The Bioconductor channel in F1000Research. F1000Research, 2015, 4, 217.	1.6	6
158	Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake. Nature Communications, 2021, 12, 6411.	12.8	6
159	MatrixQCvis: shiny-based interactive data quality exploration for omics data. Bioinformatics, 2022, 38, 1181-1182.	4.1	6
160	Upregulation of SPS100 gene expression by an antisense RNA via a switch of mRNA isoforms with different stabilities. Nucleic Acids Research, 2017, 45, 11144-11158.	14.5	5
161	Fast Monte Carlo algorithm for nonequilibrium systems. Physical Review E, 1996, 53, 4232-4235.	2.1	4
162	h5vc: scalable nucleotide tallies with HDF5. Bioinformatics, 2014, 30, 1464-1466.	4.1	4

#	Article	IF	CITATIONS
163	The Bioconductor channel in F1000Research. F1000Research, 2015, 4, 217.	1.6	4
164	Mutational landscape and complexity in CLL. Blood, 2015, 126, 2078-2079.	1.4	3
165	Reporting p Values. Cell Systems, 2019, 8, 170-171.	6.2	3
166	Asymptomatic Multiple Myeloma - Background of Progression, Evolution, and Prognosis. Blood, 2016, 128, 235-235.	1.4	3
167	DRUG PERTURBATION BASED STRATIFICATION OF LYMPHOPROLIFERATIVE DISORDERS. Hematological Oncology, 2017, 35, 56-56.	1.7	2
168	Systematic Investigation of Microenvironmental Drug Resistance Mechanisms in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 3363-3363.	1.4	2
169	CoCo: a web application to display, store and curate ChIP-on-chip data integrated with diverse types of gene expression data. Bioinformatics, 2007, 23, 771-773.	4.1	0
170	Analysis of Microarray Gene Expression Data. , 2008, , 201-230.		0
171	THE LANDSCAPE OF DRUG PERTURBATION EFFECTS IN LEUKEMIA AND LYMPHOMA. Hematological Oncology, 2019, 37, 127-127.	1.7	0
172	Systematic Mapping Of Drug and Pathway Sensitivity In Chronic Lymphocytic Leukemia Identifies Synthetic Lethal Interactions Of Mutant p53. Blood, 2013, 122, 173-173.	1.4	0
173	Discovery of Novel Drug Sensitivities in T-Prolymphocytic Leukemia (T-PLL) By High-Throughput Ex Vivo Drug Testing and Genetic Profiling. Blood, 2014, 124, 917-917.	1.4	0
174	Authoring Bioconductor workflows with BiocWorkflowTools. F1000Research, 0, 7, 431.	1.6	0