Niroshana Anandasabapathy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2621305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell, 2022, 40, 524-544.e5.	16.8	23
2	A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021, 595, 114-119.	27.8	411
3	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
4	The role of dendritic cells in cancer and anti-tumor immunity. Seminars in Immunology, 2021, 52, 101481.	5.6	91
5	Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Research, 2021, 81, 5977-5990.	0.9	14
6	201â€Type I interferon modulates langerhans cell ADAM17 in lupus to contribute to photosensitivity. , 2021, , .		0
7	Immune Checkpoint Blockade and Skin Toxicity Pathogenesis. Journal of Investigative Dermatology, 2021, , .	0.7	11
8	Ex vivo assessment of in vivo DC-targeted antibodies in pre-clinical models. Methods in Enzymology, 2020, 632, 417-430.	1.0	0
9	TOX is a critical regulator of tumour-specific T cell differentiation. Nature, 2019, 571, 270-274.	27.8	697
10	PPARÎ ³ Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunology Research, 2018, 6, 723-732.	3.4	21
11	Integrating the skin and blood transcriptomes and serum proteome in hidradenitis suppurativa reveals complement dysregulation and a plasma cell signature. PLoS ONE, 2018, 13, e0203672.	2.5	71
12	Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. Journal of Immunology, 2017, 199, 1319-1332.	0.8	24
13	IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	28.9	140
14	The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Seminars in Immunopathology, 2017, 39, 137-152.	6.1	62
15	Langerhans Cells Orchestrate TFH-Dependent Humoral Immunity. Journal of Investigative Dermatology, 2017, 137, 1826-1828.	0.7	6
16	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	30.7	987
17	Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Human Vaccines and Immunotherapeutics, 2016, 12, 104-116.	3.3	9
18	Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplantation, 2015, 50, 924-930.	2.4	75

#	Article	IF	CITATIONS
19	Circulating precursors of human CD1c+ and CD141+ dendritic cells. Journal of Experimental Medicine, 2015, 212, 401-413.	8.5	187
20	Docosahexaenoic Acid Alleviates Atopic Dermatitis in Mice by Generating T Regulatory Cells and M2 Macrophages. Journal of Investigative Dermatology, 2015, 135, 1472-1474.	0.7	13
21	ld1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nature Communications, 2015, 6, 6840.	12.8	87
22	Monocyte-Derived Dendritic Cells Upregulate Extracellular Catabolism of Aggregated Low-Density Lipoprotein on Maturation, Leading to Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2092-2103.	2.4	28
23	Correction to: "Flt3L Dependence Helps Define an Uncharacterized Subset of Murine Cutaneous Dendritic Cells― Journal of Investigative Dermatology, 2014, 134, 2850-2851.	0.7	1
24	Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. Journal of Experimental Medicine, 2014, 211, 1875-1891.	8.5	85
25	Flt3L Dependence Helps Define an Uncharacterized Subset of Murine Cutaneous Dendritic Cells. Journal of Investigative Dermatology, 2014, 134, 1265-1275.	0.7	28
26	A Phase 1 Trial of the Hematopoietic Growth Factor CDX-301 (rhuFlt3L) in Healthy Volunteers. Biology of Blood and Marrow Transplantation, 2013, 19, S112-S113.	2.0	3
27	FcÎ ³ Rs Muscle Up Dendritic Cell Cross-Presentation. Science Translational Medicine, 2013, 5, .	12.4	0
28	DCs in the Driver's Seat. Science Translational Medicine, 2013, 5, .	12.4	0
29	Brain dendritic cells: biology and pathology. Acta Neuropathologica, 2012, 124, 599-614.	7.7	147
30	Self-Destructive But Self-Controlled. Science Translational Medicine, 2012, 4, .	12.4	0
31	A Kiss That's Just a Kiss. Science Translational Medicine, 2012, 4, .	12.4	Ο
32	Separate But Not Equal: Giving the NOD to Innate Immunity in Leprosy. Science Translational Medicine, 2012, 4, .	12.4	0
33	Keeping the Peace: Skin Sentinels Maintain Immune Tolerance. Science Translational Medicine, 2012, 4, .	12.4	0
34	New Kid on the Block. Science Translational Medicine, 2012, 4, .	12.4	0
35	Sensing Sun Damage. Science Translational Medicine, 2012, 4, .	12.4	1
36	Neutrophil Superheroes: Casting NETs to Catch Bacteria. Science Translational Medicine, 2012, 4, .	12.4	0

#	Article	IF	CITATIONS
37	Jack—Not Jill—Went up the Hill. Science Translational Medicine, 2012, 4, .	12.4	0
38	Unmasking Interferon Pathways in Autoimmune Disease. Science Translational Medicine, 2012, 4, .	12.4	0
39	A Phase 1 Trial of the Hematopoietic Growth Factor CDX-301 (rhuFlt3L) in Healthy Volunteers. Blood, 2012, 120, 4124-4124.	1.4	0
40	A New Way for Natural Killers to Find Their "Missing-Self― Science Translational Medicine, 2012, 4, .	12.4	0
41	Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. Journal of Experimental Medicine, 2011, 208, 1695-1705.	8.5	185
42	Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nature Immunology, 2004, 5, 45-54.	14.5	160
43	GRAIL. Immunity, 2003, 18, 535-547.	14.3	272
44	T Cell Receptor (Tcr)-Mediated Repertoire Selection and Loss of Tcr Vβ Diversity during the Initiation of a Cd4+ T Cell Response in Vivo. Journal of Experimental Medicine, 2000, 192, 1719-1730.	8.5	71
45	Sec6/8 Complex Is Recruited to Cell–Cell Contacts and Specifies Transport Vesicle Delivery to the Basal-Lateral Membrane in Epithelial Cells. Cell, 1998, 93, 731-740.	28.9	492