Ji-Youn Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density functional theory and timeâ€dependent density functional theory studies on optoelectronic properties of fused heterocycles with cyclooctatetraene. Bulletin of the Korean Chemical Society, 2022, 43, 990-998.	1.0	1
2	Dopant Engineering for Spiroâ€OMeTAD Holeâ€Transporting Materials towards Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102124.	7.8	67
3	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie - International Edition, 2020, 59, 15688-15694.	7.2	201
4	Stabilization of Highly Efficient and Stable Phaseâ€Pure FAPbI ₃ Perovskite Solar Cells by Molecularly Tailored 2Dâ€Overlayers. Angewandte Chemie, 2020, 132, 15818-15824.	1.6	17
5	Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 2019, 61, 126-131.	8.2	35
6	Supramolecular Engineering for Formamidiniumâ€Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solidâ€ S tate NMR Spectroscopy. Advanced Energy Materials, 2019, 9, 1900284.	10.2	89
7	Influence of Alkoxy Chain Length on the Properties of Twoâ€Dimensionally Expanded Azuleneâ€Coreâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 6741-6752.	1.7	21
8	Siteâ€selective Synthesis of βâ€{70]PCBMâ€like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 3224-3228.	1.7	37
9	Boosting the Efficiency of Perovskite Solar Cells with CsBrâ€Modified Mesoporous TiO ₂ Beads as Electronâ€Selective Contact. Advanced Functional Materials, 2018, 28, 1705763.	7.8	115
10	Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 2985-2992.	15.6	216
11	Roomâ€Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Lowâ€Cost Solar Cells. Advanced Materials, 2017, 29, 1606258.	11.1	124
12	The effect of illumination on the formation of metal halide perovskite films. Nature, 2017, 545, 208-212.	13.7	242
13	New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 2017, 29, 587-594.	3.2	68
14	Effect of Cs-Incorporated NiO _{<i>x</i>} on the Performance of Perovskite Solar Cells. ACS Omega, 2017, 2, 9074-9079.	1.6	43
15	Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films. Chimia, 2017, 71, 754.	0.3	4
16	Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206-209.	6.0	3,137
17	Enhancing Efficiency of Perovskite Solar Cells via Nâ€doped Graphene: Crystal Modification and Surface Passivation. Advanced Materials, 2016, 28, 8681-8686.	11.1	281
18	Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency. Advanced Energy Materials, 2016, 6, 1600767.	10.2	224

JI-YOUN SEO

#	Article	IF	CITATIONS
19	Solar Cells: Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency (Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .	10.2	2
20	Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science, 2016, 9, 1989-1997.	15.6	4,560
21	Molecular Origins of the High-Performance Nonlinear Optical Susceptibility in a Phenolic Polyene Chromophore: Electron Density Distributions, Hydrogen Bonding, and ab Initio Calculations. Journal of Physical Chemistry C, 2013, 117, 9416-9430.	1.5	34
22	Unusual Twisting and Bending of Phenyltriene with Methylthiolated Biphenyl Sulfane Group in the Crystalline State. Crystal Growth and Design, 2013, 13, 1014-1022.	1.4	5
23	Rotational Isomerism of Phenylthiolated Chromophores with Large Variation of Optical Nonlinearity. Journal of Physical Chemistry C, 2012, 116, 25034-25043.	1.5	5
24	New Thiolated Nitrophenylhydrazone Crystals for Nonlinear Optics. Crystal Growth and Design, 2012, 12, 313-319.	1.4	13
25	Phenolic Polyene Crystals with Tailored Physical Properties and Very Large Nonlinear Optical Response. Chemistry of Materials, 2011, 23, 239-246.	3.2	36
26	Thickness Control of Highly Efficient Organic Electro-Optic Phenolic Polyene Crystals by Metal Acetates. Crystal Growth and Design, 2009, 9, 4269-4272.	1.4	11
27	Large-Size Pyrrolidine-Based Polyene Single Crystals Suitable for Terahertz Wave Generation. Crystal Growth and Design, 2009, 9, 5003-5005.	1.4	15
28	Crystal engineering by eliminating weak hydrogen bonding sites in phenolic polyene nonlinear optical crystals. CrystEngComm, 2009, 11, 1541.	1.3	24