
Lucas De Oliveira Alvares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems consolidation and fear memory generalisation as a potential target for trauma-related disorders. World Journal of Biological Psychiatry, 2022, 23, 653-665.	2.6	2
2	Effects of hippocampal IP3R inhibition on contextual fear memory consolidation, retrieval, reconsolidation and extinction. Neurobiology of Learning and Memory, 2022, 188, 107587.	1.9	2
3	Reduced Expression of Hippocampal GluN2A-NMDAR Increases Seizure Susceptibility and Causes Deficits in Contextual Memory. Frontiers in Neuroscience, 2021, 15, 644100.	2.8	17
4	Understanding the dynamic and destiny of memories. Neuroscience and Biobehavioral Reviews, 2021, 125, 592-607.	6.1	21
5	Hippocampal HECT E3 ligase inhibition facilitates consolidation, retrieval, and reconsolidation, and inhibits extinction of contextual fear memory. Neurobiology of Learning and Memory, 2020, 167, 107135.	1.9	4
6	LIMK, Cofilin 1 and actin dynamics involvement in fear memory processing. Neurobiology of Learning and Memory, 2020, 173, 107275.	1.9	7
7	Effect of the Endocannabinoid System in Memory Updating and Forgetting. Neuroscience, 2020, 444, 33-42.	2.3	8
8	Rewarding information presented during reactivation attenuates fear memory: Methylphenidate and fear memory updating. Neuropharmacology, 2020, 171, 108107.	4.1	10
9	Shifting from fear to safety through deconditioning-update. ELife, 2020, 9, .	6.0	25
10	Chronic fluoxetine prevents fear memory generalization and enhances subsequent extinction by remodeling hippocampal dendritic spines and slowing down systems consolidation. Translational Psychiatry, 2019, 9, 53.	4.8	32
11	Role of calcium-permeable AMPA receptors in memory consolidation, retrieval and updating. Neuropharmacology, 2019, 144, 312-318.	4.1	21
12	Role of HSP70 in Plasticity and Memory. Heat Shock Proteins, 2019, , 53-67.	0.2	2
13	Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course. Neurobiology of Learning and Memory, 2018, 150, 42-47.	1.9	10
14	Hippocampal plasticity mechanisms mediating experience-dependent learning change over time. Neurobiology of Learning and Memory, 2018, 150, 56-63.	1.9	8
15	Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus. Neurobiology of Learning and Memory, 2018, 151, 53-58.	1.9	13
16	HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience, 2018, 375, 108-118.	2.3	25
17	Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Molecular Neurobiology, 2018, 55, 958-967.	4.0	19
18	Pre-exposure and retrieval effects on generalization of contextual fear. Learning and Motivation, 2018, 63, 20-26.	1.2	3

#	Article	IF	CITATIONS
19	Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats. Scientific Reports, 2018, 8, 7260.	3.3	11
20	Sequential learning during contextual fear conditioning guides the rate of systems consolidation: Implications for consolidation of multiple memory traces. Hippocampus, 2017, 27, 518-528.	1.9	11
21	Reconsolidationâ€induced rescue of a remote fear memory blocked by an early cortical inhibition: Involvement of the anterior cingulate cortex and the mediation by the thalamic nucleus reuniens. Hippocampus, 2017, 27, 596-607.	1.9	34
22	Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Scientific Reports, 2017, 7, 10960.	3.3	17
23	Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology, 2017, 112, 94-103.	4.1	41
24	Novel learning accelerates systems consolidation of a contextual fear memory. Hippocampus, 2016, 26, 924-932.	1.9	17
25	Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin. Scientific Reports, 2016, 6, 22771.	3.3	61
26	The dynamic nature of systems consolidation: Stress during learning as a switch guiding the rate of the hippocampal dependency and memory quality. Hippocampus, 2016, 26, 362-371.	1.9	45
27	Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940. Neurobiology of Learning and Memory, 2016, 127, 42-47.	1.9	22
28	Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation. Scientific Reports, 2015, 5, 13633.	3.3	31
29	The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction. Learning and Memory, 2015, 22, 584-588.	1.3	24
30	Reconsolidation Allows Fear Memory to Be Updated to a Less Aversive Level through the Incorporation of Appetitive Information. Neuropsychopharmacology, 2015, 40, 315-326.	5.4	83
31	Reconsolidation may incorporate state-dependency into previously consolidated memories. Learning and Memory, 2013, 20, 379-387.	1.3	37
32	Reactivation enables memory updating, precision-keeping and strengthening: Exploring the possible biological roles of reconsolidation. Neuroscience, 2013, 244, 42-48.	2.3	95
33	Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism. Hippocampus, 2013, 23, 931-941.	1.9	26
34	Role of TRPV1 in consolidation of fear memories depends on the averseness of the conditioning procedure. Neurobiology of Learning and Memory, 2012, 97, 355-360.	1.9	29
35	Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus, 2012, 22, 1092-1095.	1.9	54
36	Long-Lasting Effects of Maternal Separation on an Animal Model of Post-Traumatic Stress Disorder: Effects on Memory and Hippocampal Oxidative Stress. Neurochemical Research, 2012, 37, 700-707.	3.3	63

#	Article	IF	CITATIONS
37	Stress response recruits the hippocampal endocannabinoid system for the modulation of fear memory. Learning and Memory, 2010, 17, 202-209.	1.3	50
38	M ₄ muscarinic receptors are involved in modulation of neurotransmission at synapses of Schaffer collaterals on CA1 hippocampal neurons in rats. Journal of Neuroscience Research, 2009, 87, 691-700.	2.9	27
39	Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 2009, 12, 905-912.	14.8	271
40	Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience, 2008, 154, 1648-1655.	2.3	125
41	Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. Neurobiology of Learning and Memory, 2008, 90, 1-9.	1.9	87
42	Facilitatory effect of the intra-hippocampal pre-test administration of MT3 in the inhibitory avoidance task. Behavioural Brain Research, 2007, 177, 227-231.	2.2	15
43	AM251, a selective antagonist of the CB1 receptor, inhibits the induction of long-term potentiation and induces retrograde amnesia in rats. Brain Research, 2006, 1075, 60-67.	2.2	74
44	Amnestic effect of intrahippocampal AM251, a CB1-selective blocker, in the inhibitory avoidance, but not in the open field habituation task, in rats. Neurobiology of Learning and Memory, 2005, 83, 119-124.	1.9	95