
Miguel Querejeta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE. Astrophysical Journal, Supplement Series, 2015, 219, 4.	7.7	202
2	RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S ⁴ G IRAC 3.6 AND 4.5 μm IMAGES. II. THE CONVERSION FROM LIGHT TO MASS. Astrophysical Journal, 2014, 788, 144.	4.5	199
3	Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies. Astrophysical Journal, 2018, 860, 172.	4.5	182
4	The lifecycle of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2872-2909.	4.4	178
5	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): PRECISE STELLAR MASS DISTRIBUTIONS FROM AUTOMATED DUST CORRECTION AT 3.6 <i>μ</i> m. Astrophysical Journal, Supplement Series, 2015, 219, 5.	7.7	177
6	PHANCS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2021, 257, 43.	7.7	161
7	Cloud-scale ISM Structure and Star Formation in M51. Astrophysical Journal, 2017, 846, 71.	4.5	119
8	THE <i>SPITZER</i> SURVEY OF STELLAR STRUCTURE IN GALAXIES (S ⁴ G): STELLAR MASSES, SIZES, AND RADIAL PROFILES FOR 2352 NEARBY GALAXIES. Astrophysical Journal, Supplement Series, 2015, 219, 3.	7.7	111
9	Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3621-3639.	4.4	106
10	Star Formation Efficiency per Free-fall Time in nearby Galaxies. Astrophysical Journal Letters, 2018, 861, L18.	8.3	97
11	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	5.1	96
12	A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES. Astrophysical Journal, 2016, 831, 16.	4.5	92
13	Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies. Astrophysical Journal, 2020, 892, 148.	4.5	88
14	Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population. Astrophysical Journal Letters, 2020, 901, L8.	8.3	85
15	PHANGS–ALMA Data Processing and Pipeline. Astrophysical Journal, Supplement Series, 2021, 255, 19.	7.7	79
16	SHORT GMC LIFETIMES: AN OBSERVATIONAL ESTIMATE WITH THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). Astrophysical Journal, 2015, 806, 72.	4.5	77
17	PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution. Astrophysical Journal, 2020, 897, 122.	4.5	77
18	Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1218-1245.	4.4	75

MIGUEL QUEREJETA

#	Article	IF	CITATIONS
19	Time Inference with MUSE in Extragalactic Rings (TIMER): properties of the survey and high-level data products. Monthly Notices of the Royal Astronomical Society, 2019, 482, 506-529.	4.4	72
20	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions. Astrophysical Journal, 2018, 854, 100.	4.5	67
21	Interacting galaxies in the nearby Universe: only moderate increase of star formation. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1742-1750.	4.4	65
22	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	4.4	65
23	On the duration of the embedded phase of star formation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 487-509.	4.4	61
24	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. Astrophysical Journal, Supplement Series, 2022, 258, 10.	7.7	58
25	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. I. Assessment of Multi-scale Variations. Astrophysical Journal, 2019, 887, 49.	4.5	57
26	Formation of SO galaxies through mergers. Astronomy and Astrophysics, 2014, 570, A103.	5.1	53
27	Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astronomy and Astrophysics, 2021, 656, A133.	5.1	53
28	Kinematic signatures of nuclear discs and bar-driven secular evolution in nearby galaxies of the MUSE TIMER project. Astronomy and Astrophysics, 2020, 643, A14.	5.1	49
29	The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation. Astrophysical Journal, 2017, 836, 62.	4.5	47
30	Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51. Astronomy and Astrophysics, 2019, 625, A19.	5.1	47
31	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. Astrophysical Journal, 2022, 927, 149.	4.5	46
32	Inside-out formation of nuclear discs and the absence of old central spheroids in barred galaxies of the TIMER survey. Astronomy and Astrophysics, 2020, 643, A65.	5.1	44
33	Formation of S0 galaxies through mergers. Astronomy and Astrophysics, 2017, 604, A105.	5.1	41
34	BEING <i>WISE</i> . I. VALIDATING STELLAR POPULATION MODELS AND <i>M</i> _{â<t< sub="">/<i>L</i>RATIOS AT 3.4 and 4.6 μ4m. Astrophysical Journal, 2014, 797, 55.</t<>}	4.5	36
35	The headlight cloud in NGC 628: An extreme giant molecular cloud in a typical galaxy disk. Astronomy and Astrophysics, 2020, 634, A121.	5.1	32
36	Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective. Astronomical Journal, 2022, 164, 43.	4.7	31

MIGUEL QUEREJETA

#	Article	IF	CITATIONS
37	Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?. Astrophysical Journal Letters, 2018, 868, L38.	8.3	27
38	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling. Astrophysical Journal, 2020, 892, 73.	4.5	27
39	Hα kinematics of S ⁴ G spiral galaxies – III. Inner rotation curves. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1199-1213.	4.4	25
40	Evolution induced by dry minor mergers onto fast-rotator S0 galaxies. Astronomy and Astrophysics, 2014, 565, A31.	5.1	24
41	Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astronomical Journal, 2021, 161, 185.	4.7	23
42	The 2D metallicity distribution and mixing scales of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1303-1322.	4.4	22
43	Clocking the assembly of double-barred galaxies with the MUSE TIMER project. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5296-5314.	4.4	21
44	Frequency and nature of central molecular outflows in nearby star-forming disk galaxies. Astronomy and Astrophysics, 2021, 653, A172.	5.1	19
45	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and Hα Emission for 49 PHANGS Galaxies. Astrophysical Journal, 2022, 927, 9.	4.5	19
46	Clues to the Formation of Spiral Structure in M51 from the Ages and Locations of Star Clusters. Astrophysical Journal, 2017, 845, 78.	4.5	16
47	Two Orders of Magnitude Variation in the Star Formation Efficiency across the Premerger Galaxy NGC 2276. Astrophysical Journal Letters, 2018, 869, L38.	8.3	16
48	Survival of molecular gas in a stellar feedback-driven outflow witnessed with the MUSE TIMER project and ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3904-3928.	4.4	15
49	The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies. Astrophysical Journal, 2021, 913, 113.	4.5	10
50	ALMA resolves giant molecular clouds in a tidal dwarf galaxy. Astronomy and Astrophysics, 2021, 645, A97.	5.1	10
51	A CO isotopologue Line Atlas within the Whirlpool galaxy Survey (CLAWS). Astronomy and Astrophysics, 2022, 662, A89.	5.1	9
52	Pal ² , Hl ^{\pm} , and Attenuation in NGC 5194 and NGC 6946. Astrophysical Journal, 2020, 892, 23.	4.5	8
53	Galaxies within galaxies in the TIMER survey: stellar populations of inner bars are scaled replicas of main bars. Astronomy and Astrophysics, 2021, 646, A42.	5.1	8
54	Creating S0s with Major Mergers: A 3D View. Galaxies, 2015, 3, 202-211.	3.0	2

MIGUEL QUEREJETA

#	Article	IF	CITATIONS
55	Interactions, Starbursts, and Star Formation. Galaxies, 2015, 3, 220-226.	3.0	2
56	Creating lenticular galaxies with mergers. Proceedings of the International Astronomical Union, 2016, 11, 114-116.	0.0	1
57	Stellar Mass Maps for S4G. Proceedings of the International Astronomical Union, 2014, 10, 337-337.	0.0	0
58	Interactions and star formation. Proceedings of the International Astronomical Union, 2015, 11, 236-239.	0.0	0