Marcia L Spetch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2620443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Good news is better than bad news, but bad news is not worse than no news. Learning and Behavior, 2022, , 1.	1.0	0
2	Aversive view memories and risk perception in navigating ants. Scientific Reports, 2022, 12, 2899.	3.3	4
3	Landmark. , 2022, , 3844-3848.		0
4	Role of the pheromone for navigation in the group foraging ant, Veromessor pergandei. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 353-367.	1.6	6
5	Encoding Context Determines Risky Choice. Psychological Science, 2021, 32, 743-754.	3.3	7
6	Traveling through light clutter: Path integration and panorama guided navigation in the Sonoran Desert ant, Novomessor cockerelli. Behavioural Processes, 2021, 186, 104373.	1.1	3
7	Effects of winning cues and relative payout on choice between simulated slot machines. Addiction, 2020, 115, 1719-1727.	3.3	17
8	Pheromone cue triggers switch between vectors in the desert harvest ant, Veromessor pergandei. Animal Cognition, 2020, 23, 1087-1105.	1.8	7
9	Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 755-767.	1.6	11
10	Same but different: Socially foraging ants backtrack like individually foraging ants but use different mechanisms. Journal of Insect Physiology, 2019, 118, 103944.	2.0	11
11	Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis velox. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 177-189.	1.6	20
12	Anticipation of a midsession reversal in humans. Behavioural Processes, 2019, 159, 60-64.	1.1	4
13	Suboptimal choice and initialâ€link requirement. Journal of the Experimental Analysis of Behavior, 2019, 112, 242-253.	1.1	1
14	Frequency and value both matter in the suboptimal choice procedure. Journal of the Experimental Analysis of Behavior, 2019, 111, 1-11.	1.1	3
15	Comparative inspiration: From puzzles with pigeons to novel discoveries with humans in risky choice. Behavioural Processes, 2019, 160, 10-19.	1.1	11
16	Odometry and backtracking: social and individual navigation in group foraging desert harvester ants (Veromessor pergandei). Animal Cognition, 2019, 22, 35-47.	1.8	9
17	The influence of outcome delay on suboptimal choice. Behavioural Processes, 2018, 157, 279-285.	1.1	12
18	Living near the edge: How extreme outcomes and their neighbors drive risky choice Journal of Experimental Psychology: General, 2018, 147, 1905-1918.	2.1	24

#	Article	IF	CITATIONS
19	Landmark. , 2018, , 1-6.		0
20	Chickadees discriminate contingency reversals presented consistently, but not frequently. Animal Cognition, 2017, 20, 655-663.	1.8	6
21	Sensitivity of the avian motion system to light and dark stimuli. Experimental Brain Research, 2017, 235, 401-406.	1.5	5
22	The Role of Memory in Distinguishing Risky Decisions from Experience and Description. Quarterly Journal of Experimental Psychology, 2017, 70, 2048-2059.	1.1	27
23	The contribution of nonrigid motion and shape information to object perception in pigeons and humans. Journal of Vision, 2017, 17, 17.	0.3	3
24	Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 1857-1871.	0.9	9
25	Look up: Human adults use vertical height cues in reorientation. Memory and Cognition, 2016, 44, 1277-1287.	1.6	7
26	Pigeons perform poorly on a midsession reversal task without rigid temporal regularity. Animal Cognition, 2016, 19, 855-859.	1.8	10
27	When good news leads to bad choices. Journal of the Experimental Analysis of Behavior, 2016, 105, 23-40.	1.1	70
28	Multiple cue use and integration in pigeons (Columba livia). Animal Cognition, 2016, 19, 581-591.	1.8	10
29	Cue salience influences the use of height cues in reorientation in pigeons (Columba livia) Journal of Experimental Psychology Animal Learning and Cognition, 2016, 42, 273-280.	0.5	5
30	When is a choice not a choice? Pigeons fail to inhibit incorrect responses on a go/no-go midsession reversal task Journal of Experimental Psychology Animal Learning and Cognition, 2015, 41, 255-265.	0.5	19
31	When good pigeons make bad decisions: Choice with probabilistic delays and outcomes. Journal of the Experimental Analysis of Behavior, 2015, 104, 241-251.	1.1	21
32	Priming memories of past wins induces risk seeking Journal of Experimental Psychology: General, 2015, 144, 24-29.	2.1	46
33	Practice makes proficient: pigeons (Columba livia) learn efficient routes on full-circuit navigational traveling salesperson problems. Animal Cognition, 2015, 18, 53-64.	1.8	8
34	Avian cognition: examples of sophisticated capabilities in space and song. Wiley Interdisciplinary Reviews: Cognitive Science, 2015, 6, 285-297.	2.8	6
35	Rapid makes risky: Time pressure increases risk seeking in decisions from experience. Journal of Cognitive Psychology, 2015, 27, 921-928.	0.9	41
36	Temporal summation of global form signals in dynamic Glass patterns. Vision Research, 2015, 107, 30-35.	1.4	11

#	Article	IF	CITATIONS
37	Combining sky and Earth: Desert ants (<i>Melophorus bagoti</i>) show weighted integration of celestial and terrestrial cues. Journal of Experimental Biology, 2014, 217, 4159-66.	1.7	81
38	Reward context determines risky choice in pigeons and humans. Biology Letters, 2014, 10, 20140451.	2.3	34
39	Use of geometric properties of landmark arrays for reorientation relative to remote cities and local objects Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 476-491.	0.9	4
40	Remembering the best and worst of times: Memories for extreme outcomes bias risky decisions. Psychonomic Bulletin and Review, 2014, 21, 629-636.	2.8	73
41	Extreme Outcomes Sway Risky Decisions from Experience. Journal of Behavioral Decision Making, 2014, 27, 146-156.	1.7	58
42	Passing a Hide-and-Seek Third-Person Turing Test. IEEE Transactions on Games, 2014, 6, 18-30.	1.4	5
43	Visualizing and quantifying movement from pre-recorded videos: The spectral time-lapse (STL) algorithm. F1000Research, 2014, 3, 19.	1.6	11
44	Reorientation in diamond-shaped environments: encoding of features and angles in enclosures versus arrays by adult humans and pigeons (Columbia livia). Animal Cognition, 2013, 16, 565-581.	1.8	6
45	Comparative Spatial CognitionEncoding of Geometric Information from Surfaces and Landmark Arrays. , 2012, , .		4
46	Is the enhancement of memory due to reward driven by value or salience?. Acta Psychologica, 2012, 139, 343-349.	1.5	48
47	Geometric orientation by humans: angles weigh in. Psychonomic Bulletin and Review, 2012, 19, 436-442.	2.8	20
48	Strategies in landmark use by orangutans and human children. Animal Cognition, 2011, 14, 487-502.	1.8	21
49	Of Black Swans and Tossed Coins: Is the Description-Experience Gap in Risky Choice Limited to Rare Events?. PLoS ONE, 2011, 6, e20262.	2.5	85
50	Contributions of category and fine-grained information to location memory: When categories don't weigh in. Memory and Cognition, 2010, 38, 154-162.	1.6	1
51	Not using the obvious: desert ants, Melophorus bagoti, learn local vectors but not beacons in an arena. Animal Cognition, 2010, 13, 849-860.	1.8	21
52	Facilitation by view combination and coherent motion in dynamic object recognition. Vision Research, 2010, 50, 202-210.	1.4	6
53	Categories and Range Effects in Human Spatial Memory. Frontiers in Psychology, 2010, 1, 231.	2.1	3
54	Understanding how Pictures are Seen is Important for Comparative Cognition Comparative Cognition and Behavior Reviews, 2010, 5, 163-166.	2.0	4

#	Article	IF	CITATIONS
55	Proximity to an edge affects search strategy in adults and children. Behavioural Processes, 2010, 85, 265-277.	1.1	5
56	View combination in moving objects: The role of motion in discriminating between novel views of similar and distinctive objects by humans and pigeons. Vision Research, 2009, 49, 594-607.	1.4	14
57	Pigeons' (Columba livia) hierarchical organization of local and global cues in touch screen tasks. Behavioural Processes, 2009, 80, 128-139.	1.1	15
58	Distortions in location memory. Psychonomic Bulletin and Review, 2008, 15, 328-336.	2.8	9
59	Penetrating the geometric module: Catalyzing children's use of landmarks Developmental Psychology, 2007, 43, 1523-1530.	1.6	85
60	Small-scale spatial cognition in pigeons. Behavioural Processes, 2006, 72, 115-127.	1.1	60
61	Dynamic object recognition in pigeons and humans. Learning and Behavior, 2006, 34, 215-228.	1.0	20
62	Determinants of range effects in face recognition. Learning and Behavior, 2006, 34, 229-240.	1.0	4
63	Age and sex differences in children's spatial search strategies. Psychonomic Bulletin and Review, 2006, 13, 807-812.	2.8	24
64	Pigeons See Correspondence Between Objects and Their Pictures. Psychological Science, 2006, 17, 966-972.	3.3	30
65	Recognition by Humans and Pigeons of Novel Views of 3-D Objects and Their Photographs Journal of Experimental Psychology: General, 2005, 134, 149-162.	2.1	27
66	Peak shift but not range effects in recognition of faces. Learning and Motivation, 2004, 35, 221-241.	1.2	33
67	Strategies in landmark use by children, adults, and marmoset monkeys. Learning and Motivation, 2004, 35, 322-347.	1.2	66
68	Searching in the Center: Pigeons (Columba livid) Encode Relative Distance From Walls of an Enclosure Journal of Comparative Psychology (Washington, D C: 1983), 2004, 118, 113-117.	0.5	42
69	Recognizing rotated views of objects: Interpolation versus generalization by humans and pigeons. Psychonomic Bulletin and Review, 2003, 10, 135-140.	2.8	33
70	An automated apparatus for presenting depth-rotated three-dimensional objects in human and animal object recognition research. Behavior Research Methods, 2003, 35, 343-349.	1.3	7
71	Searching by rules: Pigeons' (Columba livia) landmark-based search according to constant bearing or constant distance Journal of Comparative Psychology (Washington, D C: 1983), 2003, 117, 123-132.	0.5	39
72	Spatial generalization and peak shift in humans. Learning and Motivation, 2002, 33, 358-389.	1.2	30

#	Article	IF	CITATIONS
73	The effect of distinctive parts on recognition of depth-rotated objects by pigeons (Columba livia) and humans Journal of Experimental Psychology: General, 2001, 130, 238-255.	2.1	23
74	Perception of coherent motion in random dot displays by pigeons and humans. Perception & Psychophysics, 1999, 61, 1089-1101.	2.3	41
75	Encoding of spatial information in images of an outdoor scene by pigeons and humans. Learning and Behavior, 1998, 26, 85-102.	3.4	6
76	A step function in pigeons' temporal generalization in the peak shift task. Learning and Behavior, 1998, 26, 103-118.	3.4	20
77	Perception of pictorial depth cues by pigeons. Psychonomic Bulletin and Review, 1998, 5, 698-704.	2.8	27
78	Use of landmark configuration in pigeons and humans: II. Generality across search tasks Journal of Comparative Psychology (Washington, D C: 1983), 1997, 111, 14-24.	0.5	145
79	CONTIGUITY AND CONDITIONED REINFORCEMENT IN PROBABILISTIC CHOICE. Journal of the Experimental Analysis of Behavior, 1997, 68, 317-327.	1.1	46
80	Averaging temporal duration and spatial position Journal of Experimental Psychology, 1996, 22, 175-182.	1.7	23
81	Learning the configuration of a landmark array: I. Touch-screen studies with pigeons and humans Journal of Comparative Psychology (Washington, D C: 1983), 1996, 110, 55-68.	0.5	127
82	Overshadowing in landmark learning: Touch-screen studies with pigeons and humans Journal of Experimental Psychology, 1995, 21, 166-181.	1.7	62
83	CHOICE BETWEEN RELIABLE AND UNRELIABLE REINFORCEMENT ALTERNATIVES REVISITED: PREFERENCE FOR UNRELIABLE REINFORCEMENT. Journal of the Experimental Analysis of Behavior, 1994, 62, 353-366.	1.1	48
84	Pigeons′ Use of Landmarks Presented in Digitized Images. Learning and Motivation, 1994, 25, 245-275.	1.2	31
85	Determinants of pigeons' choice between certain and probabilistic outcomes. Learning and Behavior, 1994, 22, 239-251.	3.4	50
86	Landmark use by pigeons in a touch-screen spatial search task. Learning and Behavior, 1992, 20, 281-292.	3.4	56
87	CHOICE WITH UNCERTAIN OUTCOMES: CONDITIONED REINFORCEMENT EFFECTS. Journal of the Experimental Analysis of Behavior, 1990, 53, 201-218.	1.1	71
88	SUBOPTIMAL CHOICE IN A PERCENTAGE-REINFORCEMENT PROCEDURE: EFFECTS OF SIGNAL CONDITION AND TERMINAL-LINK LENGTH. Journal of the Experimental Analysis of Behavior, 1990, 53, 219-234.	1.1	88
89	Pigeons', Columba livia, use of global and local cues for spatial memory. Animal Behaviour, 1988, 36, 293-296.	1.9	69
90	CHOICE BETWEEN RELIABLE AND UNRELIABLE OUTCOMES: MIXED PERCENTAGE-REINFORCEMENT IN CONCURRENT CHAINS. Journal of the Experimental Analysis of Behavior, 1987, 47, 57-72.	1.1	36

#	Article	IF	CITATIONS
91	Determining When Birds Perceive Correspondence Between Pictures and Objects: A Critique Comparative Cognition and Behavior Reviews, 0, 5, 117-131.	2.0	29
92	Comparative Cognition of Object Recognition. Comparative Cognition and Behavior Reviews, 0, 1, .	2.0	17
93	It's All a Matter of Time: Interval Timing and Competition for Stimulus Control. Comparative Cognition and Behavior Reviews, 0, 12, 83-103.	2.0	12