List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261993/publications.pdf Version: 2024-02-01

RDETT R DALM

#	Article	IF	CITATIONS
1	Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 2015, 42, 4623-4630.	4.0	284
2	Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophysical Research Letters, 2015, 42, 653-664.	4.0	212
3	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
4	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	3.3	184
5	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.	4.9	137
6	Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation. Journal of Physical Chemistry A, 2015, 119, 4418-4432.	2.5	126
7	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmospheric Chemistry and Physics, 2016, 16, 2943-2970.	4.9	122
8	HO _x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling. Atmospheric Measurement Techniques, 2015, 8, 4863-4890.	3.1	118
9	Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmospheric Chemistry and Physics, 2016, 16, 4283-4305.	4.9	117
10	Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science & Technology, 2017, 51, 8491-8500.	10.0	117
11	Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. Environmental Science & Technology, 2019, 53, 8682-8694.	10.0	111
12	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proceedings of the United States of America, 2020, 117, 29469-29477.	7.1	100
13	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	3.3	93
14	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	4.9	89
15	Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters, 2015, 42, 4182-4189.	4.0	84
16	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	4.9	82
17	Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 2014, 41, 7701-7709.	4.0	77
18	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	4.9	71

#	Article	IF	CITATIONS
19	Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation. Environmental Science & Technology, 2016, 50, 9952-9962.	10.0	69
20	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	12.9	66
21	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	4.9	64
22	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	4.9	63
23	Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmospheric Chemistry and Physics, 2014, 14, 2657-2667.	4.9	62
24	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	4.9	62
25	Secondary organic aerosol formation from in situ OH, O ₃ , and NO ₃ oxidation of ambient forest air in an oxidation flow reactor. Atmospheric Chemistry and Physics, 2017, 17, 5331-5354.	4.9	57
26	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WE AN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	3.3	54
27	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
28	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	4.9	52
29	HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. Environmental Science & Technology, 2020, 54, 5954-5963.	10.0	51
30	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	4.9	45
31	Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules. Atmospheric Measurement Techniques, 2019, 12, 3137-3149.	3.1	45
32	Observation and Control of Shock Waves in Individual Nanoplasmas. Physical Review Letters, 2014, 112, 115004.	7.8	43
33	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	4.0	43
34	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	3.3	41
35	Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots. Nano Letters, 2013, 13, 2924-2930.	9.1	40
36	Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Sciences: Processes and Impacts, 2018, 20, 1546-1558.	3.5	40

#	Article	IF	CITATIONS
37	Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental Science & Technology, 2013, 47, 12566-12574.	10.0	38
38	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	4.9	36
39	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	3.3	36
40	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
41	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	6.8	32
42	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
43	Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging. ACS Nano, 2014, 8, 8810-8818.	14.6	30
44	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
45	Solvents Effects on Charge Transfer from Quantum Dots. Journal of the American Chemical Society, 2015, 137, 3759-3762.	13.7	29
46	Model Evaluation of New Techniques for Maintaining High-NO Conditions in Oxidation Flow Reactors for the Study of OH-Initiated Atmospheric Chemistry. ACS Earth and Space Chemistry, 2018, 2, 72-86.	2.7	26
47	Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams. Journal of Physical Chemistry Letters, 2016, 7, 609-615.	4.6	23
48	Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & amp; Technology, 2020, 54, 5980-5991.	10.0	22
49	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
50	In situ measurements of water uptake by black carbon ontaining aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.	3.3	21
51	Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions. Atmospheric Measurement Techniques, 2019, 12, 5829-5844.	3.1	20
52	Resolving Ambient Organic Aerosol Formation and Aging Pathways with Simultaneous Molecular Composition and Volatility Observations. ACS Earth and Space Chemistry, 2020, 4, 391-402.	2.7	19
53	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	4.1	17
54	Observations and Modeling of NO <i>_x</i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	2.7	17

#	Article	IF	CITATIONS
55	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	3.1	15
56	Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. Atmospheric Measurement Techniques, 2022, 15, 1811-1827.	3.1	14
57	Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. Environmental Science & Technology, 2021, 55, 15637-15645.	10.0	13
58	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	4.9	12
59	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	3.1	12
60	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033730.	3.3	12
61	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
62	Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes. Geophysical Research Letters, 2022, 49, .	4.0	10
63	Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A. Atmospheric Chemistry and Physics, 2020, 20, 5995-6014.	4.9	9
64	Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .	4.0	7
65	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	4.0	7
66	The CU Airborne Solar Occultation Flux Instrument: Performance Evaluation during BB-FLUX. ACS Earth and Space Chemistry, 2022, 6, 582-596.	2.7	7
67	Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging. Analytical Chemistry, 2018, 90, 4046-4053.	6.5	6
68	Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.	3.1	6
69	Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research, 2022, 13, 101269.	3.8	5
70	Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption. ACS Earth and Space Chemistry, 0, , .	2.7	3
71	Ultrafast electronic structures and dynamics of CdSe nanocrystals revealed by gas phase time-resolved photoelectron spectroscopy. , 2014, , .		0
72	Ultrafast Dynamics of Individual, Isolated Nanoparticles and Nanoplasmas in Intense Laser Fields. , 2014, , .		0

#	Article	IF	CITATIONS
73	Femtosecond Dynamics of Solvated Electrons in Nanodroplets Probed with Extreme Ultraviolet Beams. , 2016, , .		0