Alireza Marandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2619430/publications.pdf

Version: 2024-02-01

96 papers 3,835

218677 26 h-index 50 g-index

96 all docs 96 docs citations

96 times ranked 2407 citing authors

#	Article	IF	Citations
1	All-optical ultrafast ReLU function for energy-efficient nanophotonic deep learning. Nanophotonics, 2023, 12, 847-855.	6.0	21
2	Temporal walk-off induced dissipative quadratic solitons. Nature Photonics, 2022, 16, 162-168.	31.4	14
3	Quasi-static optical parametric amplification. Optica, 2022, 9, 273.	9.3	25
4	Topological optical parametric oscillation. Nanophotonics, 2022, 11, 1611-1618.	6.0	8
5	Topological dissipation in a time-multiplexed photonic resonator network. Nature Physics, 2022, 18, 442-449.	16.7	58
6	Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 2022, 9, 303.	9.3	49
7	Nonlinear quantum behavior of ultrashort-pulse optical parametric oscillators. Physical Review A, 2022, 105, .	2.5	5
8	Dissipative Quadratic Solitons: Few-Cycle Frequency Combs in the Mid-IR., 2022,,.		0
9	Photonic Topological Dissipation in Time-Multiplexed Resonator Networks. , 2021, , .		2
10	0.5-W Few-Cycle Frequency Comb at 4 \hat{l} 4m from an Efficient Simulton-based Optical Parametric Oscillator. , 2021, , .		0
11	Mid-Infrared Cross-Comb Spectroscopy using Sum-Frequency Sampling. , 2021, , .		O
12	Efficient Ultra-broadband Optical Parametric Generation with Picojoule Pulse Energies., 2021,,.		0
13	100 dB/cm broadband optical parametric amplification in dispersion engineered nanophotonic lithium niobate waveguides. , 2021, , .		5
14	Walk-off Induced Dissipative Quadratic Solitons in Degenerate Optical Parametric Oscillators. , 2021, , .		0
15	Wavelength-scale optical parametric oscillators. Optica, 2021, 8, 262.	9.3	12
16	Spectral phase transitions in optical parametric oscillators. Nature Communications, 2021, 12, 835.	12.8	29
17	Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators. Optica, 2021, 8, 415.	9.3	27
18	Femtojoule, Femtosecond, All-Optical Switching in Integrated Lithium Niobate Photonics., 2021,,.		3

#	Article	IF	Citations
19	Cross-Comb Spectroscopy using Sum-Frequency Sampling in the Mid-IR. , 2021, , .		O
20	Integrated Nonlinear Photonics: New Opportunities in the Nanometer and Femtosecond Scales. , 2021, , .		0
21	Quasi-static Optical Parametric Amplification. , 2021, , .		1
22	Realizing spin Hamiltonians in nanoscale active photonic lattices. Nature Materials, 2020, 19, 725-731.	27.5	32
23	Mie Resonance Engineering in Meta-Shell Supraparticles for Nanoscale Nonlinear Optics. ACS Nano, 2020, 14, 17203-17212.	14.6	19
24	Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7, 40.	9.3	172
25	Photonics for computing and computing for photonics. Nanophotonics, 2020, 9, 4053-4054.	6.0	6
26	Observation of second-order spectral phase transition in optical parametric oscillator. , 2020, , .		0
27	Optical Parametric Oscillation in Dielectric Multipolar Nanostructures. , 2020, , .		0
28	Topological Behaviors in Networks of Time-Multiplexed Optical Resonators. , 2020, , .		0
29	Ultrabroadband Nonlinear Optics in Nanophotonic Lithium Niobate Waveguides. , 2020, , .		0
30	Quadratic Soliton Frequency Comb at 4 \grave{U}^{\sharp} m from an OP-GaP-based Optical Parametric Oscillator. , 2020, , .		0
31	Nanolaser-based emulators of spin Hamiltonians. Nanophotonics, 2020, 9, 4193-4198.	6.0	3
32	Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Science Advances, 2019, 5, eaau0823.	10.3	169
33	Dispersive versus Dissipative Coupling for Frequency Synchronization in Lasers. Physical Review Applied, 2019, 12, .	3.8	20
34	Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining. Optics Express, 2019, 27, 21102.	3.4	10
35	Half-Harmonic Generation: Enabling Photonic Solutions for Molecular Sensing and Non-Classical Computing., 2019,,.		0
36	Temporal Simultons in Optical Parametric Oscillators. Physical Review Letters, 2018, 120, 053904.	7.8	51

#	Article	IF	CITATIONS
37	Quantum vs. Optical Annealing: Benchmarking the OPO Ising Machine and D-Wave. , 2018, , .		2
38	Second-harmonic generation in nanophotonic PPLN waveguides with ultrahigh efficiencies. , 2018, , .		3
39	Efficient half-harmonic generation of three-optical-cycle mid-IR frequency comb around 4 µm using OP-GaP. Optics Express, 2018, 26, 9963.	3.4	28
40	Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5, 1438.	9.3	392
41	Combinatorial optimization using networks of optical parametric oscillators. , 2017, , .		1
42	Simulton Formation in Mid-Infrared Femtosecond Optical Parametric Oscillators., 2017,,.		0
43	Femtosecond Temporal Simulton Formation in Optical Parametric Oscillators. , 2017, , .		0
44	Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Physical Review A, 2016, 94, .	2.5	30
45	Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared. Optica, 2016, 3, 324.	9.3	32
46	A coherent Ising machine for 2000-node optimization problems. Science, 2016, 354, 603-606.	12.6	469
47	A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science, 2016, 354, 614-617.	12.6	427
48	A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems. Scientific Reports, 2016, 6, 34089.	3.3	60
49	A Degenerate Optical Parametric Oscillator Network for Coherent Computation. Lecture Notes in Physics, 2016, , 219-249.	0.7	1
50	Reduced Models for Pulse Shaping and Nonlinear Dynamics in Optical Parametric Oscillators. , 2016, , .		0
51	19-nJ Five-Cycle Pulses from a $2 \cdot \hat{l} \frac{1}{4}$ m Degenerate Optical Parametric Oscillator. , 2016 , , .		0
52	Quantum correlation in degenerate optical parametric oscillators with mutual injections. Physical Review A, 2015, 92, .	2.5	41
53	Sub-100 fs Fiber Feedback Synchronously Pumped Degenerate Optical Parametric Oscillator. , 2015, , .		0
54	Efficient cascaded half-harmonic generation of femtosecond frequency combs centered at 2.09 & amp;#x03BC;m and 4.18 & amp;#x03BC;m from a mode-locked Yb:Fiber laser., 2015,,.		0

#	Article	IF	CITATIONS
55	Femtosecond optical parametric oscillator frequency combs. Journal of Optics (United Kingdom), 2015, 17, 094010.	2.2	25
56	Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2  μm. Optics Letters, 2015, 40, 4368.	3.3	11
57	Guided-wave half-harmonic generation of frequency combs with â^1/475-fold spectral broadening. , 2015, , .		2
58	Quarter-harmonic generation of femtosecond pulses at 4.18 $\hat{A}\mu m$ from a mode-locked Yb:fiber laser. , 2015, , .		0
59	Fractional-length sync-pumped degenerate optical parametric oscillator for 500-MHz 3-μm mid-infrared frequency comb generation. Optics Letters, 2014, 39, 900.	3.3	12
60	^87Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb. Optics Express, 2014, 22, 10494.	3.4	5
61	Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nature Photonics, 2014, 8, 937-942.	31.4	339
62	Network of femtosecond degenerate OPOs for solving NP-Hard Ising problems. , 2014, , .		0
63	SOLVING THE ISING PROBLEM USING DEGENERATE OPTICAL PARAMETRIC OSCILLATORS. , 2014, , .		0
64	2.09-Â μ m degenerate femtosecond OPO with over 60% conversion efficiency and 0.6-W output. , 2014, , .		1
65	Octave-spanning supercontinuum generation in in situ tapered As_2S_3 fiber pumped by a thulium-doped fiber laser. Optics Letters, 2013, 38, 2865.	3.3	79
66	Intracavity trace molecular detection with a broadband mid-IR frequency comb source. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 631.	2.1	44
67	Coherent Ising machine based on degenerate optical parametric oscillators. Physical Review A, 2013, 88,	2.5	226
68	Fiveâ€cycle pulses near λ = 3 νm produced in a subharmonic optical parametric oscillator via fine dispersion management. Laser and Photonics Reviews, 2013, 7, L93.	8.7	9
69	In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation. Journal of Visualized Experiments, 2013, , e50518.	0.3	3
70	Intracavity molecular spectroscopy in the mid-IR using ultra-broadband optical parametric oscillator. Proceedings of SPIE, 2013, , .	0.8	0
71	500-MHz Mid-IR Frequency Comb Source Based on a Compact Subharmonic OPO., 2013,,.		0
72	Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Optics Express, 2012, 20, 7255.	3.4	91

#	Article	IF	Citations
73	All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. Optics Express, 2012, 20, 19322.	3.4	71
74	Broadband Intracavity Molecular Spectroscopy with a Degenerate Mid-IR OPO., 2012,,.		1
75	Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 î¼m. Optics Express, 2012, 20, 24218.	3.4	110
76	Octave-spanning ultrafast OPO with 26-61µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Optics Express, 2012, 20, 7046.	3.4	270
77	Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO. Optics Express, 2012, 20, 27589.	3.4	26
78	GaAs-based subharmonic OPO with an instantaneous bandwidth of 3.1–5.8 Âμm pumped by a femtosecond Tm-fiber laser. , 2012, , .		0
79	Broadband mid-IR subharmonic OPOs for molecular spectroscopy. Proceedings of SPIE, 2012, , .	0.8	1
80	Mid-Infrared Supercontinuum Generation from 2.4 Â μ m to 4.6 Â μ m in Tapered Chalcogenide Fiber. , 2012, , .		1
81	Nearly 3-6Âμm Spectral Comb Derived from Tm Mode-locked Laser using GaAs-based Degenerate OPO. , 2012, , .		0
82	Broadband degenerate OPO for mid-infrared frequency comb generation. Optics Express, 2011, 19, 6296.	3.4	167
83	Balancing interferometers with slow-light elements. Optics Letters, 2011, 36, 933.	3.3	4
84	Coherence properties of a mid-infrared frequency comb produced by a degenerate optical parametric oscillator. , $2011, \ldots$		0
85	Octave Wide Mid-Infrared Frequency Comb Rigorously Derived from commercial Near-IR Mode-locked Laser. , 2011, , .		0
86	Mid-IR spectral comb with broad instantaneous bandwidth using subharmonic OPO., 2011,,.		0
87	Divide-and-conquer approach to the generation of mid-infrared frequency combs. , 2011, , .		O
88	Twin Degenerate OPO for Quantum Random Bit Generation., 2011,,.		0
89	Quantum Random Bit Generation Using Degenerate Optical Parametric Oscillator. , 2011, , .		0
90	New source of ultra-broadband mid-IR frequency combs for spectroscopic applications. , 2010, , .		0

#	Article	IF	CITATIONS
91	Proposal for Compact Optical Filters Using Large Index Step Binary Supergratings. IEEE Photonics Technology Letters, 2008, 20, 676-678.	2.5	5
92	Design of a Single-Feed Dual-Band Dual-Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization. IEEE Transactions on Antennas and Propagation, 2008, 56, 1845-1852.	5.1	79
93	Design of a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs. Optics Express, 2008, 16, 10427.	3.4	24
94	An FDTD-based tool for simulation of nonlinear interactions of guided waves. , 2008, , .		0
95	Compact Binary Super-Gratings Using a Large Refractive Index Step. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	O
96	Design of a Highly Focused Photonic Crystal Lens Using Boolean Particle Swarm Optimization. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	2